Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 585-607, 2024, DOI:10.32604/cmes.2024.051221

    Abstract In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN (Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet metadata excluding specific node information. The proposed method omits biased packet metadata such as… More >

  • Open Access

    ARTICLE

    Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network

    Saad Abdalla Agaili Mohamed*, Sefer Kurnaz

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 819-841, 2024, DOI:10.32604/cmc.2024.050474

    Abstract VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world. However, increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorize VPN network data. We present a novel VPN network traffic flow classification method utilizing Artificial Neural Networks (ANN). This paper aims to provide a reliable system that can identify a virtual private network (VPN) traffic from intrusion attempts, data exfiltration, and denial-of-service assaults. We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns. Next, we create an ANN architecture that can… More >

  • Open Access

    ARTICLE

    Combo Packet: An Encryption Traffic Classification Method Based on Contextual Information

    Yuancong Chai, Yuefei Zhu*, Wei Lin, Ding Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1223-1243, 2024, DOI:10.32604/cmc.2024.049904

    Abstract With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has become a core key technology in network supervision. In recent years, many different solutions have emerged in this field. Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-level features of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites, temporal features can exhibit significant variations due to changes in communication links and transmission quality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.… More >

  • Open Access

    ARTICLE

    A New Encrypted Traffic Identification Model Based on VAE-LSTM-DRN

    Haizhen Wang1,2,*, Jinying Yan1,*, Na Jia1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 569-588, 2024, DOI:10.32604/cmc.2023.046055

    Abstract Encrypted traffic identification pertains to the precise acquisition and categorization of data from traffic datasets containing imbalanced and obscured content. The extraction of encrypted traffic attributes and their subsequent identification presents a formidable challenge. The existing models have predominantly relied on direct extraction of encrypted traffic data from imbalanced datasets, with the dataset’s imbalance significantly affecting the model’s performance. In the present study, a new model, referred to as UD-VLD (Unbalanced Dataset-VAE-LSTM-DRN), was proposed to address above problem. The proposed model is an encrypted traffic identification model for handling unbalanced datasets. The encoder of the… More >

  • Open Access

    ARTICLE

    MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN

    Kaiyue Wang1, Jian Gao1,2,*, Xinyan Lei1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 619-638, 2023, DOI:10.32604/iasc.2023.036701

    Abstract Traffic characterization (e.g., chat, video) and application identification (e.g., FTP, Facebook) are two of the more crucial jobs in encrypted network traffic classification. These two activities are typically carried out separately by existing systems using separate models, significantly adding to the difficulty of network administration. Convolutional Neural Network (CNN) and Transformer are deep learning-based approaches for network traffic classification. CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence, and Transformer can capture long-distance feature dependencies while ignoring local details. Based on these characteristics, a multi-task learning model that… More >

  • Open Access

    ARTICLE

    GraphCWGAN-GP: A Novel Data Augmenting Approach for Imbalanced Encrypted Traffic Classification

    Jiangtao Zhai1,*, Peng Lin1, Yongfu Cui1, Lilong Xu1, Ming Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 2069-2092, 2023, DOI:10.32604/cmes.2023.023764

    Abstract Encrypted traffic classification has become a hot issue in network security research. The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance. Although the Generative Adversarial Network (GAN) method can generate new samples by learning the feature distribution of the original samples, it is confronted with the problems of unstable training and mode collapse. To this end, a novel data augmenting approach called GraphCWGAN-GP is proposed in this paper. The traffic data is first converted into grayscale images as the input for the proposed model. Then, the minority… More >

  • Open Access

    ARTICLE

    Dark-Forest: Analysis on the Behavior of Dark Web Traffic via DeepForest and PSO Algorithm

    Xin Tong1, Changlin Zhang2,*, Jingya Wang1, Zhiyan Zhao1, Zhuoxian Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 561-581, 2023, DOI:10.32604/cmes.2022.022495

    Abstract The dark web is a shadow area hidden in the depths of the Internet, which is difficult to access through common search engines. Because of its anonymity, the dark web has gradually become a hotbed for a variety of cyber-crimes. Although some research based on machine learning or deep learning has been shown to be effective in the task of analyzing dark web traffic in recent years, there are still pain points such as low accuracy, insufficient real-time performance, and limited application scenarios. Aiming at the difficulties faced by the existing automated dark web traffic… More >

  • Open Access

    ARTICLE

    Semisupervised Encrypted Traffic Identification Based on Auxiliary Classification Generative Adversarial Network

    Jiaming Mao1,*, Mingming Zhang1, Mu Chen2, Lu Chen2, Fei Xia1, Lei Fan1, ZiXuan Wang3, Wenbing Zhao4

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 373-390, 2021, DOI:10.32604/csse.2021.018086

    Abstract The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased network traffic markedly. Over the past few decades, network traffic identification has been a research hotspot in the field of network management and security monitoring. However, as more network services use encryption technology, network traffic identification faces many challenges. Although classic machine learning methods can solve many problems that cannot be solved by port- and payload-based methods, manually extract features that are frequently updated is time-consuming and labor-intensive. Deep learning has good automatic feature learning… More >

  • Open Access

    ARTICLE

    MalDetect: A Structure of Encrypted Malware Traffic Detection

    Jiyuan Liu1, Yingzhi Zeng2, Jiangyong Shi2, Yuexiang Yang2,∗, Rui Wang3, Liangzhong He4

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 721-739, 2019, DOI:10.32604/cmc.2019.05610

    Abstract Recently, TLS protocol has been widely used to secure the application data carried in network traffic. It becomes more difficult for attackers to decipher messages through capturing the traffic generated from communications of hosts. On the other hand, malwares adopt TLS protocol when accessing to internet, which makes most malware traffic detection methods, such as DPI (Deep Packet Inspection), ineffective. Some literatures use statistical method with extracting the observable data fields exposed in TLS connections to train machine learning classifiers so as to infer whether a traffic flow is malware or not. However, most of… More >

Displaying 1-10 on page 1 of 9. Per Page