Fang-Yie Leu1, Kun-Lin Tsai2,*, Li-Woei Chen3, Deng-Yao Yao2, Jian-Fu Tsai2, Ju-Wei Zhu2, Guo-Wei Wang2
CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1937-1957, 2025, DOI:10.32604/cmc.2025.068486
- 29 August 2025
Abstract With the rapid development of Cloud-Edge-End (CEE) computing, the demand for secure and lightweight communication protocols is increasingly critical, particularly for latency-sensitive applications such as smart manufacturing, healthcare, and real-time monitoring. While traditional cryptographic schemes offer robust protection, they often impose excessive computational and energy overhead, rendering them unsuitable for use in resource-constrained edge and end devices. To address these challenges, in this paper, we propose a novel lightweight encryption framework, namely Dynamic Session Key Allocation with Time-Indexed Ascon (DSKA-TIA). Built upon the NIST-endorsed Ascon algorithm, the DSKA-TIA introduces a time-indexed session key generation mechanism… More >