Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (241)
  • Open Access

    ARTICLE

    Combo Packet: An Encryption Traffic Classification Method Based on Contextual Information

    Yuancong Chai, Yuefei Zhu*, Wei Lin, Ding Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1223-1243, 2024, DOI:10.32604/cmc.2024.049904 - 25 April 2024

    Abstract With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has become a core key technology in network supervision. In recent years, many different solutions have emerged in this field. Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-level features of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites, temporal features can exhibit significant variations due to changes in communication links and transmission quality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.… More >

  • Open Access

    ARTICLE

    Securing Cloud-Encrypted Data: Detecting Ransomware-as-a-Service (RaaS) Attacks through Deep Learning Ensemble

    Amardeep Singh1, Hamad Ali Abosaq2, Saad Arif3, Zohaib Mushtaq4,*, Muhammad Irfan5, Ghulam Abbas6, Arshad Ali7, Alanoud Al Mazroa8

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 857-873, 2024, DOI:10.32604/cmc.2024.048036 - 25 April 2024

    Abstract Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries, especially in light of the growing number of cybersecurity threats. A major and ever-present threat is Ransomware-as-a-Service (RaaS) assaults, which enable even individuals with minimal technical knowledge to conduct ransomware operations. This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models. For this purpose, the network intrusion detection dataset “UNSW-NB15” from the Intelligent Security Group of the University of New South Wales, Australia is analyzed. In the… More >

  • Open Access

    ARTICLE

    A Hybrid Cybersecurity Algorithm for Digital Image Transmission over Advanced Communication Channel Models

    Naglaa F. Soliman1, Fatma E. Fadl-Allah2, Walid El-Shafai3,4,*, Mahmoud I. Aly2, Maali Alabdulhafith1, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 201-241, 2024, DOI:10.32604/cmc.2024.046757 - 25 April 2024

    Abstract The efficient transmission of images, which plays a large role in wireless communication systems, poses a significant challenge in the growth of multimedia technology. High-quality images require well-tuned communication standards. The Single Carrier Frequency Division Multiple Access (SC-FDMA) is adopted for broadband wireless communications, because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio (PAPR). Data transmission through open-channel networks requires much concentration on security, reliability, and integrity. The data need a space away from unauthorized access, modification, or deletion. These requirements are to be fulfilled by digital image watermarking and… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Federated Deep Learning Diagnostic Method for Multi-Stage Diseases

    Jinbo Yang1, Hai Huang1, Lailai Yin2, Jiaxing Qu3, Wanjuan Xie4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3085-3099, 2024, DOI:10.32604/cmes.2023.045417 - 11 March 2024

    Abstract Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources, including clinical symptoms, physical signs, biochemical test results, imaging findings, pathological examination data, and even genetic data. When applying machine learning modeling to predict and diagnose multi-stage diseases, several challenges need to be addressed. Firstly, the model needs to handle multimodal data, as the data used by doctors for diagnosis includes image data, natural language data, and structured data. Secondly, privacy of patients’ data needs to be protected, as these data contain the most sensitive and private information. Lastly, considering the practicality of the… More >

  • Open Access

    ARTICLE

    Blockchain-Based Certificateless Bidirectional Authenticated Searchable Encryption Scheme in Cloud Email System

    Yanzhong Sun1, Xiaoni Du1,*, Shufen Niu2, Xiaodong Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3287-3310, 2024, DOI:10.32604/cmes.2023.043589 - 11 March 2024

    Abstract Traditional email systems can only achieve one-way communication, which means only the receiver is allowed to search for emails on the email server. In this paper, we propose a blockchain-based certificateless bidirectional authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirectional searchable encryption (CL-BSE) by combining the storage function of cloud server with the communication function of email server. In the new model, not only can the data receiver search for the relevant content by generating its own trapdoor, but the data owner also can retrieve the content in the same… More >

  • Open Access

    ARTICLE

    Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System

    Zhiqing Dong1, Zhao Zhang1,*, Hongyan Zhou2, Xuebo Chen2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1977-1993, 2024, DOI:10.32604/cmc.2024.047233 - 27 February 2024

    Abstract With the advent of the information security era, it is necessary to guarantee the privacy, accuracy, and dependable transfer of pictures. This study presents a new approach to the encryption and compression of color images. It is predicated on 2D compressed sensing (CS) and the hyperchaotic system. First, an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security. Then, the processed images are concurrently encrypted and compressed using 2D CS. Among them, chaotic sequences replace traditional random measurement matrices to increase the system’s security. Third, the processed images are More >

  • Open Access

    ARTICLE

    An Innovative Approach Using TKN-Cryptology for Identifying the Replay Assault

    Syeda Wajiha Zahra1, Muhammad Nadeem2, Ali Arshad3,*, Saman Riaz3, Muhammad Abu Bakr4, Ashit Kumar Dutta5, Zaid Alzaid6, Badr Almutairi7, Sultan Almotairi8

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 589-616, 2024, DOI:10.32604/cmc.2023.042386 - 30 January 2024

    Abstract Various organizations store data online rather than on physical servers. As the number of user’s data stored in cloud servers increases, the attack rate to access data from cloud servers also increases. Different researchers worked on different algorithms to protect cloud data from replay attacks. None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack. This study presents the development of a TKN (Text, Key and Name) cryptographic algorithm aimed at protecting data from replay attacks. The program employs distinct ways to encrypt plain text [P], a user-defined Key… More >

  • Open Access

    ARTICLE

    Privacy Enhanced Mobile User Authentication Method Using Motion Sensors

    Chunlin Xiong1,2, Zhengqiu Weng3,4,*, Jia Liu1, Liang Gu2, Fayez Alqahtani5, Amr Gafar6, Pradip Kumar Sharma7

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3013-3032, 2024, DOI:10.32604/cmes.2023.031088 - 15 December 2023

    Abstract With the development of hardware devices and the upgrading of smartphones, a large number of users save privacy-related information in mobile devices, mainly smartphones, which puts forward higher demands on the protection of mobile users’ privacy information. At present, mobile user authentication methods based on human-computer interaction have been extensively studied due to their advantages of high precision and non-perception, but there are still shortcomings such as low data collection efficiency, untrustworthy participating nodes, and lack of practicability. To this end, this paper proposes a privacy-enhanced mobile user authentication method with motion sensors, which mainly… More >

  • Open Access

    ARTICLE

    Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption

    Mohanad A. Mohammed*, Hala B. Abdul Wahab

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1731-1748, 2024, DOI:10.32604/cmes.2023.030528 - 17 November 2023

    Abstract Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges. Concurrently, the Internet of Things (IoT) has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services, ultimately enhancing human lives. This paper presents a new approach utilizing lightweight blockchain technology, effectively reducing the computational burden typically associated with conventional blockchain systems. By integrating this lightweight blockchain with IoT systems, substantial reductions in implementation time and computational complexity can be achieved. Moreover, the paper proposes the utilization of the Okamoto More >

  • Open Access

    ARTICLE

    Federated Learning Model for Auto Insurance Rate Setting Based on Tweedie Distribution

    Tao Yin1, Changgen Peng2,*, Weijie Tan3, Dequan Xu4, Hanlin Tang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 827-843, 2024, DOI:10.32604/cmes.2023.029039 - 22 September 2023

    Abstract In the assessment of car insurance claims, the claim rate for car insurance presents a highly skewed probability distribution, which is typically modeled using Tweedie distribution. The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset, when the data is provided by multiple parties, training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge. To address this issue, this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos. The algorithm can keep sensitive data locally and uses… More >

Displaying 11-20 on page 2 of 241. Per Page