Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Utilizing Machine Learning and SHAP Values for Improved and Transparent Energy Usage Predictions

    Faisal Ghazi Beshaw1, Thamir Hassan Atyia2, Mohd Fadzli Mohd Salleh1, Mohamad Khairi Ishak3, Abdul Sattar Din1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3553-3583, 2025, DOI:10.32604/cmc.2025.061400 - 16 April 2025

    Abstract The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries. In order to improve the precision and openness of energy consumption projections, this study investigates the combination of machine learning (ML) methods with Shapley additive explanations (SHAP) values. The study evaluates three distinct models: the first is a Linear Regressor, the second is a Support Vector Regressor, and the third is a Decision Tree Regressor, which was scaled up to a Random Forest Regressor/Additions made were the third one which was… More >

  • Open Access

    ARTICLE

    Energy-Efficient and Cost-Effective Approaches through Energy Modeling for Hotel Building

    Alya Penta Agharid1, Indra Permana2, Nitesh Singh1, Fujen Wang2,*, Susan Gustiyana2

    Energy Engineering, Vol.121, No.12, pp. 3549-3571, 2024, DOI:10.32604/ee.2024.056398 - 22 November 2024

    Abstract Hotel buildings are currently among the largest energy consumers in the world. Heating, ventilation, and air conditioning are the most energy-intensive building systems, accounting for more than half of total energy consumption. An energy audit is used to predict the weak points of a building’s energy use system. Various factors influence building energy consumption, which can be modified to achieve more energy-efficient strategies. In this study, an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year. Energy modeling is conducted by using Autodesk Revit 2025. It… More >

  • Open Access

    ARTICLE

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

    Saroj Lamichhane1, Roseline Mostafa2, Bhaskaran Gopalakrishnan2,*, Dayakar G. Devaru3

    Energy Engineering, Vol.121, No.10, pp. 2743-2767, 2024, DOI:10.32604/ee.2024.051035 - 11 September 2024

    Abstract Building energy performance is a function of numerous building parameters. In this study, sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings. Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool (eQUEST). The model is calibrated using the Normalized Mean Bias Error (NMBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)) method. The model satisfies the NMBE and CV(RMSE) criteria set by… More > Graphic Abstract

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

Displaying 1-10 on page 1 of 3. Per Page