Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Hydrothermally synthesized highly stable binary manganese magnesium sulfide (MnMgS) composite with carbon nanotubes for high-performance supercapattery applications

    M. A. Sadia,*, A. Mahmoodb, W. Al-Masryb, C. W. Dunnillc, N. Mahmoodd

    Chalcogenide Letters, Vol.21, No.12, pp. 965-976, 2024, DOI:10.15251/CL.2024.2112.965

    Abstract The device which combines the outcomes supercapacitor (SC) and battery is known as supercapattery. Due to their high conductivity, sensitivity, and storage capacity, carbon nanotubes have drawn attention in energy storage (EES) applications. To achieve highperformance supercapattery, this study used an electrode based on carbon nanotubes (CNTs) and manganese magnesium sulfide (MnMgS). It showed 963 C/g specific capacity which is significantly greater than the reference sample's value of 1 A/g. The supercapattery is engineered using the CNT-doped MnMgS electrode (MnMgS/CNT//AC), which has a specific capacity (Cs) of 268 Cg-1 at 1 Ag-1 current density. A significantly higher More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Energy Storage Devices

    Xiaocong Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, 2024, DOI:10.32604/icces.2024.011810

    Abstract With the ever-growing demand for miniature electronics and portable devices, the need for new types of micro-sized, low-cost and high-performance electrochemical energy storage devices becomes a cutting-edge research frontier. Advanced manufacturing technology (such as 3D printing) has brought broad application prospects and new opportunities to the construction of advanced electrochemical energy storage materials and devices. With a focus on “advanced manufacturing of new energy storage materials and devices”, we carried out interdisciplinary research on 3D/4D printing of wearable miniature batteries and supercapacitors, integrable energy devices and systems. Notably, a universal 3D printing approach towards advanced More >

  • Open Access

    ARTICLE

    Adaptive Neuro-Fuzzy Based Load Frequency Control in Presence of Energy Storage Devices

    Pankaj Jood*, Sanjeev Kumar Aggarwal, Vikram Chopra

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 785-804, 2022, DOI:10.32604/iasc.2022.025217 - 03 May 2022

    Abstract Energy storage technologies are utilized for improving the primary frequency control in complex electrical systems. In this paper, the modeling and simulation of a two-area power system is done to evaluate and compare the impact of three different energy storage applications on load frequency control performance. Capacitive energy storage (CES), battery energy storage (BES), and superconducting magnetic energy storage (SMES) are considered for the study. On the basis of peak overshoot and settling time, the performance of these energy storage devices is compared. The power system consists of thermal, wind, and solar resources. All nonlinearities… More >

Displaying 1-10 on page 1 of 3. Per Page