Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    MOCBOA: Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems

    Nour Elhouda Chalabi1, Abdelouahab Attia2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Frank Werner6, Pradeep Jangir7, Mohammad Shokouhifar8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 967-1008, 2025, DOI:10.32604/cmes.2025.062332 - 11 April 2025

    Abstract Multi-objective optimization is critical for problem-solving in engineering, economics, and AI. This study introduces the Multi-Objective Chef-Based Optimization Algorithm (MOCBOA), an upgraded version of the Chef-Based Optimization Algorithm (CBOA) that addresses distinct objectives. Our approach is unique in systematically examining four dominance relations—Pareto, Epsilon, Cone-epsilon, and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front. Our comparison investigation, which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering, mechanical design, and power systems, reveals that the dominance approach More >

  • Open Access

    REVIEW

    Particle Swarm Optimization: Advances, Applications, and Experimental Insights

    Laith Abualigah*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1539-1592, 2025, DOI:10.32604/cmc.2025.060765 - 17 February 2025

    Abstract Particle Swarm Optimization (PSO) has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields. This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications, but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms. Covering six strategic areas, which include Data Mining, Machine Learning, Engineering Design, Energy Systems, Healthcare, and Robotics, the study demonstrates the versatility and effectiveness of the PSO. Experimental results are, however, used to show the strong and More >

  • Open Access

    ARTICLE

    Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems

    Miloš Sedak*, Maja Rosić, Božidar Rosić

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2111-2145, 2025, DOI:10.32604/cmes.2025.059319 - 27 January 2025

    Abstract This paper introduces a hybrid multi-objective optimization algorithm, designated HMODESFO, which amalgamates the exploratory prowess of Differential Evolution (DE) with the rapid convergence attributes of the Sailfish Optimization (SFO) algorithm. The primary objective is to address multi-objective optimization challenges within mechanical engineering, with a specific emphasis on planetary gearbox optimization. The algorithm is equipped with the ability to dynamically select the optimal mutation operator, contingent upon an adaptive normalized population spacing parameter. The efficacy of HMODESFO has been substantiated through rigorous validation against established industry benchmarks, including a suite of Zitzler-Deb-Thiele (ZDT) and Zeb-Thiele-Laumanns-Zitzler (DTLZ) More >

  • Open Access

    ARTICLE

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

    Feyza Altunbey Özbay1, Erdal Özbay2, Farhad Soleimanian Gharehchopogh3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1067-1110, 2024, DOI:10.32604/cmes.2024.054334 - 27 September 2024

    Abstract Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in CLS… More > Graphic Abstract

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

  • Open Access

    ARTICLE

    Chase, Pounce, and Escape Optimization Algorithm

    Adel Sabry Eesa*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 697-723, 2024, DOI:10.32604/iasc.2024.053192 - 06 September 2024

    Abstract While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple with the delicate balance between exploration and exploitation, leading to issues such as premature convergence, sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges, this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups, each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima. By incorporating a unique search mechanism that integrates More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design

    Liang Zeng1,2, Mai Hu1, Chenning Zhang1, Quan Yuan1, Shanshan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1677-1709, 2024, DOI:10.32604/cmc.2024.049717 - 18 July 2024

    Abstract Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes, this study introduces an advanced Improved Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after… More >

  • Open Access

    ARTICLE

    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404 - 30 December 2023

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer… More >

  • Open Access

    ARTICLE

    An Improved Elite Slime Mould Algorithm for Engineering Design

    Li Yuan1, Jianping Ji1, Xuegong Liu1, Tong Liu2, Huiling Chen3, Deng Chen4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 415-454, 2023, DOI:10.32604/cmes.2023.026098 - 23 April 2023

    Abstract The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements. As a representative, Slime mould algorithm (SMA) is widely used because of its superior initial performance. Therefore, this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems. For this aim, the structure of SMA is adjusted to develop the efficiency of the original method. As a stochastic optimizer, SMA mainly stimulates the behavior of slime mold in nature. For the harmony of the exploration and exploitation of SMA, the paper proposed an… More > Graphic Abstract

    An Improved Elite Slime Mould Algorithm for Engineering Design

  • Open Access

    ARTICLE

    IRKO: An Improved Runge-Kutta Optimization Algorithm for Global Optimization Problems

    R. Manjula Devi1, M. Premkumar2, Pradeep Jangir3, Mohamed Abdelghany Elkotb4,5, Rajvikram Madurai Elavarasan6, Kottakkaran Sooppy Nisar7,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4803-4827, 2022, DOI:10.32604/cmc.2022.020847 - 11 October 2021

    Abstract Optimization is a key technique for maximizing or minimizing functions and achieving optimal cost, gains, energy, mass, and so on. In order to solve optimization problems, metaheuristic algorithms are essential. Most of these techniques are influenced by collective knowledge and natural foraging. There is no such thing as the best or worst algorithm; instead, there are more effective algorithms for certain problems. Therefore, in this paper, a new improved variant of a recently proposed metaphorless Runge-Kutta Optimization (RKO) algorithm, called Improved Runge-Kutta Optimization (IRKO) algorithm, is suggested for solving optimization problems. The IRKO is formulated… More >

Displaying 1-10 on page 1 of 10. Per Page