Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549 - 16 April 2024

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445 - 16 April 2024

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features

    Qazi Mazhar ul Haq1, Fahim Arif2,3, Khursheed Aurangzeb4, Noor ul Ain3, Javed Ali Khan5, Saddaf Rubab6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4379-4397, 2024, DOI:10.32604/cmc.2024.047172 - 26 March 2024

    Abstract Software project outcomes heavily depend on natural language requirements, often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements. Researchers are exploring machine learning to predict software bugs, but a more precise and general approach is needed. Accurate bug prediction is crucial for software evolution and user training, prompting an investigation into deep and ensemble learning methods. However, these studies are not generalized and efficient when extended to other datasets. Therefore, this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems. The methods involved feature… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    User Purchase Intention Prediction Based on Improved Deep Forest

    Yifan Zhang1, Qiancheng Yu1,2,*, Lisi Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 661-677, 2024, DOI:10.32604/cmes.2023.044255 - 30 December 2023

    Abstract Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection. To address this issue, based on the deep forest algorithm and further integrating evolutionary ensemble learning methods, this paper proposes a novel Deep Adaptive Evolutionary Ensemble (DAEE) model. This model introduces model diversity into the cascade layer, allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns. Moreover, this paper optimizes the methods of obtaining feature vectors, enhancement vectors, and prediction results within the deep More >

  • Open Access

    ARTICLE

    DNEF: A New Ensemble Framework Based on Deep Network Structure

    Siyu Yang1, Ge Song1,*, Yuqiao Deng2, Changyu Liu1, Zhuoyu Ou1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4055-4072, 2023, DOI:10.32604/cmc.2023.042277 - 26 December 2023

    Abstract Deep neural networks have achieved tremendous success in various fields, and the structure of these networks is a key factor in their success. In this paper, we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework (DNEF). Unlike other ensemble learning models, DNEF is an ensemble learning architecture of network structures, with serial iteration between the hidden layers, while base classifiers are trained in parallel within these hidden layers. Specifically, DNEF uses randomly sampled data as input and implements serial iteration based on the… More >

  • Open Access

    ARTICLE

    Modified MMS: Minimization Approach for Model Subset Selection

    C. Rajathi, P. Rukmani*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 733-756, 2023, DOI:10.32604/cmc.2023.041507 - 31 October 2023

    Abstract Considering the recent developments in the digital environment, ensuring a higher level of security for networking systems is imperative. Many security approaches are being constantly developed to protect against evolving threats. An ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior studies. This research work aimed to create a more diverse and effective ensemble model. To this end, selected six classification models, Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF) from existing study to run… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique

    Yih Bing Chu*, Zhi Min Lim, Bryan Keane, Ping Hao Kong, Ahmed Rafat Elkilany, Osama Hisham Abusetta

    Journal of Cyber Security, Vol.5, pp. 33-46, 2023, DOI:10.32604/jcs.2023.045422 - 03 November 2023

    Abstract The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud, particularly in credit card transactions. Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising from potentially fraudulent activities. However, a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations. While sampling techniques can significantly reduce computational time, the resulting dataset relies on generated data and the accuracy of the pre-processing… More >

  • Open Access

    ARTICLE

    Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration

    Chun Sha1,*, Chaohui Yue2, Wenchen Wang3

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 369-381, 2023, DOI:10.32604/sdhm.2023.027948 - 07 September 2023

    Abstract Convolution neural networks in deep learning can solve the problem of damage identification based on vibration acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks, and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to generate submodels after offset sampling. When using submodels for damage identification, the voting method ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. More >

Displaying 21-30 on page 3 of 88. Per Page