Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access


    Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory

    Nga Nguyen Thi Thanh, Quang H. Nguyen*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 491-504, 2023, DOI:10.32604/csse.2023.032107

    Abstract Nowadays, web systems and servers are constantly at great risk from cyberattacks. This paper proposes a novel approach to detecting abnormal network traffic using a bidirectional long short-term memory (LSTM) network in combination with the ensemble learning technique. First, the binary classification module was used to detect the current abnormal flow. Then, the abnormal flows were fed into the multilayer classification module to identify the specific type of flow. In this research, a deep learning bidirectional LSTM model, in combination with the convolutional neural network and attention technique, was deployed to identify a specific attack. To solve the real-time intrusion-detecting… More >

  • Open Access


    Identification Method for Users-Transformer Relationship in Station Area Based on Local Selective Combination in Parallel Outlier Ensembles Algorithm

    Yunlong Ma1, Junwei Niu2,*, Bo Xu3, Xingtao Song2, Wei Huang2, Guoqiang Sun2

    Energy Engineering, Vol.120, No.3, pp. 681-700, 2023, DOI:10.32604/ee.2023.024719

    Abstract In the power distribution system, the missing or incorrect file of users-transformer relationship (UTR) in low-voltage station area (LVSA) will affect the lean management of the LVSA, and the operation and maintenance of the distribution network. To effectively improve the lean management of LVSA, the paper proposes an identification method for the UTR based on Local Selective Combination in Parallel Outlier Ensembles algorithm (LSCP). Firstly, the voltage data is reconstructed based on the information entropy to highlight the differences in between. Then, the LSCP algorithm combines four base outlier detection algorithms, namely Isolation Forest (I-Forest), One-Class Support Vector Machine (OC-SVM),… More >

  • Open Access


    MI-STEG: A Medical Image Steganalysis Framework Based on Ensemble Deep Learning

    Rukiye Karakis1,2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4649-4666, 2023, DOI:10.32604/cmc.2023.035881

    Abstract Medical image steganography aims to increase data security by concealing patient-personal information as well as diagnostic and therapeutic data in the spatial or frequency domain of radiological images. On the other hand, the discipline of image steganalysis generally provides a classification based on whether an image has hidden data or not. Inspired by previous studies on image steganalysis, this study proposes a deep ensemble learning model for medical image steganalysis to detect malicious hidden data in medical images and develop medical image steganography methods aimed at securing personal information. With this purpose in mind, a dataset containing brain Magnetic Resonance… More >

  • Open Access


    Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences

    Umair Muneer Butt1,2,*, Hadiqa Aman Ullah2, Sukumar Letchmunan1, Iqra Tariq2, Fadratul Hafinaz Hassan1, Tieng Wei Koh3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5017-5033, 2023, DOI:10.32604/cmc.2023.035512

    Abstract Human Activity Recognition (HAR) is an active research area due to its applications in pervasive computing, human-computer interaction, artificial intelligence, health care, and social sciences. Moreover, dynamic environments and anthropometric differences between individuals make it harder to recognize actions. This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications. It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network. Moreover, the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information. Six state-of-the-art pre-trained models… More >

  • Open Access


    Reducing Dataset Specificity for Deepfakes Using Ensemble Learning

    Qaiser Abbas1, Turki Alghamdi1, Yazed Alsaawy1, Tahir Alyas2,*, Ali Alzahrani1, Khawar Iqbal Malik3, Saira Bibi4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4261-4276, 2023, DOI:10.32604/cmc.2023.034482

    Abstract The emergence of deep fake videos in recent years has made image falsification a real danger. A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content. Because of how clever these videos are frequently, Manipulation is challenging to spot. Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human. In earlier times, it was not so easy to alter the videos, which required expertise in the domain… More >

  • Open Access


    An Intelligent Hazardous Waste Detection and Classification Model Using Ensemble Learning Techniques

    Mesfer Al Duhayyim1,*, Saud S. Alotaibi2, Shaha Al-Otaibi3, Fahd N. Al-Wesabi4, Mahmoud Othman5, Ishfaq Yaseen6, Mohammed Rizwanullah6, Abdelwahed Motwakel6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3315-3332, 2023, DOI:10.32604/cmc.2023.033250

    Abstract Proper waste management models using recent technologies like computer vision, machine learning (ML), and deep learning (DL) are needed to effectively handle the massive quantity of increasing waste. Therefore, waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process. This study concentrates on the design of hazardous waste detection and classification using ensemble learning (HWDC-EL) technique to reduce toxicity and improve human health. The goal of the HWDC-EL technique is to detect the multiple classes of wastes, particularly hazardous and non-hazardous wastes.… More >

  • Open Access


    GA-Stacking: A New Stacking-Based Ensemble Learning Method to Forecast the COVID-19 Outbreak

    Walaa N. Ismail1,2,*, Hessah A. Alsalamah3,4, Ebtesam Mohamed2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3945-3976, 2023, DOI:10.32604/cmc.2023.031194

    Abstract As a result of the increased number of COVID-19 cases, Ensemble Machine Learning (EML) would be an effective tool for combatting this pandemic outbreak. An ensemble of classifiers can improve the performance of single machine learning (ML) classifiers, especially stacking-based ensemble learning. Stacking utilizes heterogeneous-base learners trained in parallel and combines their predictions using a meta-model to determine the final prediction results. However, building an ensemble often causes the model performance to decrease due to the increasing number of learners that are not being properly selected. Therefore, the goal of this paper is to develop and evaluate a generic, data-independent… More >

  • Open Access


    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET segmentation model is trained using… More >

  • Open Access


    Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus

    G. Geetha1,2,*, K. Mohana Prasad1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 703-718, 2023, DOI:10.32604/iasc.2023.032530

    Abstract Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure. It causes hyperglycemia and chronic multiorgan dysfunction, including blindness, renal failure, and cardiovascular disease, if left untreated. One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test, this procedure involves extracting blood quite frequently, which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring. Existing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems, to overcome these… More >

  • Open Access


    Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model

    S. Vanitha1,*, P. Balasubramanie2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 849-864, 2023, DOI:10.32604/iasc.2023.032324

    Abstract Internet of things (IOT) possess cultural, commercial and social effect in life in the future. The nodes which are participating in IOT network are basically attracted by the cyber-attack targets. Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain. Machine Learning Based Ensemble Intrusion Detection (MLEID) method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport (MQTT) and Hyper-Text Transfer Protocol (HTTP) protocols. The proposed work has two significant contributions which are a selection of features and detection of attacks. New… More >

Displaying 21-30 on page 3 of 63. Per Page