Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    CONVECTIVE HEAT EXCHANGER FROM RENEWABLE SUN RADIATION BY NANOFLUIDS FLOW IN DIRECT ABSORPTION SOLAR COLLECTORS WITH ENTROPY

    Girma Tafesse , Mitiku Daba, Vedagiri G. Naidu

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-12, 2023, DOI:10.5098/hmt.20.27

    Abstract Innovative technologies necessitate extra energy, which can be captured from environmentally sustainable, renewable solar energy. Here, heat and mass transfer through stirring nanofluids in solar collectors for direct absorption of sunlight are pronounced. The similarity transformation served to turn mathematically regulated partial differential equations into sets of nonlinear higher-order ordinary differential equations. These equations have been resolved by the homotopy analysis method manipulating, BVPh2.0 package in Mathematica 12.1. Validations are justified through comparison. Afterward, stronger magnetic field interactions delay the nanofluids mobility. Temperature increases with thermal radiation and Biot numbers. Entropy formation and nanoparticle concentration dwindle when Schmidt’s number surges. More >

  • Open Access

    ARTICLE

    Degree-Based Entropy Descriptors of Graphenylene Using Topological Indices

    M. C. Shanmukha1, Sokjoon Lee2,*, A. Usha3, K. C. Shilpa4, Muhammad Azeem5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 939-964, 2023, DOI:10.32604/cmes.2023.027254

    Abstract Graph theory plays a significant role in the applications of chemistry, pharmacy, communication, maps, and aeronautical fields. The molecules of chemical compounds are modelled as a graph to study the properties of the compounds. The geometric structure of the compound relates to a few physical properties such as boiling point, enthalpy, π-electron energy, molecular weight. The article aims to determine the practical application of graph theory by solving one of the interdisciplinary problems describing the structures of benzenoid hydrocarbons and graphenylene. The topological index is an invariant of a molecular graph associated with the chemical structure, which shows the correlation… More >

  • Open Access

    ARTICLE

    Facial Emotion Recognition Using Swarm Optimized Multi-Dimensional DeepNets with Losses Calculated by Cross Entropy Function

    A. N. Arun1,*, P. Maheswaravenkatesh2, T. Jayasankar2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3285-3301, 2023, DOI:10.32604/csse.2023.035356

    Abstract The human face forms a canvas wherein various non-verbal expressions are communicated. These expressional cues and verbal communication represent the accurate perception of the actual intent. In many cases, a person may present an outward expression that might differ from the genuine emotion or the feeling that the person experiences. Even when people try to hide these emotions, the real emotions that are internally felt might reflect as facial expressions in the form of micro expressions. These micro expressions cannot be masked and reflect the actual emotional state of a person under study. Such micro expressions are on display for… More >

  • Open Access

    ARTICLE

    An Endogenous Feedback and Entropy Analysis in Machine Learning Model for Stock’s Return Forecast

    Edson Vinicius Pontes Bastos1,*, Jorge Junio Moreira Antunes2, Lino Guimarães Marujo1, Peter Fernandes Wanke2, Roberto Ivo da Rocha Lima Filho1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3175-3190, 2023, DOI:10.32604/iasc.2023.034582

    Abstract Stock markets exhibit Brownian movement with random, non-linear, uncertain, evolutionary, non-parametric, nebulous, chaotic characteristics and dynamism with a high degree of complexity. Developing an algorithm to predict returns for decision-making is a challenging goal. In addition, the choice of variables that will serve as input to the model represents a non-triviality, since it is possible to observe endogeneity problems between the predictor and the predicted variables. Thus, the goal is to analyze the endogenous origin of the stock return prediction model based on technical indicators. For this, we structure a feed-forward neural network. We evaluate the endogenous feedback between the… More >

  • Open Access

    ARTICLE

    Deep Learning Framework for Landslide Severity Prediction and Susceptibility Mapping

    G. Bhargavi*, J. Arunnehru

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1257-1272, 2023, DOI:10.32604/iasc.2023.034335

    Abstract Landslides are a natural hazard that is unpredictable, but we can prevent them. The Landslide Susceptibility Index reduces the uncertainty of living with landslides significantly. Planning and managing landslide-prone areas is critical. Using the most optimistic deep neural network techniques, the proposed work classifies and analyses the severity of the landslide. The selected experimental study area is Kerala’s Idukki district. A total of 3363 points were considered for this experiment using historic landslide points, field surveys, and literature searches. The primary triggering factors slope degree, slope aspect, elevation (altitude), normalized difference vegetation index (NDVI), and distance from road, lithology, and… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Pythagorean MCDM Methods for the Risk Assessment of Childhood Cancer

    Shaista Habib1, Muhammad Akram2,*, M. M. Ali Al-Shamiri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2585-2615, 2023, DOI:10.32604/cmes.2023.024551

    Abstract According to the World Health Organization (WHO), cancer is the leading cause of death for children in low and middle-income countries. Around 400,000 kids get diagnosed with this illness each year, and their survival rate depends on the country in which they live. In this article, we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer. The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS, Pythagorean Fuzzy Entropy (PF-Entropy), and Pythagorean Fuzzy Power… More > Graphic Abstract

    Comparative Analysis of Pythagorean MCDM Methods for the Risk Assessment of Childhood Cancer

  • Open Access

    ARTICLE

    A Novel Modified Alpha Power Transformed Weibull Distribution and Its Engineering Applications

    Refah Alotaibi1, Hassan Okasha2,3, Mazen Nassar2,4, Ahmed Elshahhat5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2065-2089, 2023, DOI:10.32604/cmes.2023.023408

    Abstract This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique. We refer to the new model as modified alpha power transformed Weibull distribution. The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions, which are quite familiar in environmental investigations. Its hazard rate function can be decreasing, increasing, bathtub and upside-down then bathtub shaped. Diverse structural properties of the proposed model are acquired including quantile function, moments, entropies, order statistics, residual life and reversed failure… More >

  • Open Access

    ARTICLE

    Entropies of the Y-Junction Type Nanostructures

    Ricai Luo1, Aisha Javed2, Muhammad Azeem3,*, Muhammad Kamran Jamil3, Hassan Raza4, Muhammad Yasir Ilyas5

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2665-2679, 2023, DOI:10.32604/cmes.2023.023044

    Abstract Recent research on nanostructures has demonstrated their importance and application in a variety of fields. Nanostructures are used directly or indirectly in drug delivery systems, medicine and pharmaceuticals, biological sensors, photodetectors, transistors, optical and electronic devices, and so on. The discovery of carbon nanotubes with Y-shaped junctions is motivated by the development of future advanced electronic devices. Because of their interaction with Y-junctions, electronic switches, amplifiers, and three-terminal transistors are of particular interest. Entropy is a concept that determines the uncertainty of a system or network. Entropy concepts are also used in biology, chemistry, and applied mathematics. Based on the… More >

  • Open Access

    ARTICLE

    Investigation on the Long Term Operational Stability of Underground Energy Storage in Salt Rock

    Jun Zhou1,*, Shijie Fang1, Jinghong Peng1, Qing Li2, Guangchuan Liang1,*

    Energy Engineering, Vol.120, No.1, pp. 221-243, 2023, DOI:10.32604/ee.2022.020317

    Abstract Underground energy storage is an important function of all energy supply systems, and especially concerning the seemingly eternal imbalance between production and demand. Salt rock underground energy storage, for one, is widely applied in both traditional and renewable energy fields; and this particular technique can be used to store natural gas, hydrogen, and compressed air. However, resource diversification and structural complexity make the supply system increasingly uncertain with the passing years, leading to great challenges for energy storage facilities in the present, and perhaps going into the future as well. Hence, it is necessary to research the operation stability of… More >

  • Open Access

    ARTICLE

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

    Hong’an Li1, Min Zhang1,*, Dufeng Chen2, Jing Zhang1, Meng Yang3, Zhanli Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 779-794, 2023, DOI:10.32604/cmes.2022.022369

    Abstract Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis. To overcome the limitations of the color rendering method based on deep learning, such as poor model stability, poor rendering quality, fuzzy boundaries and crossed color boundaries, we propose a novel hinge-cross-entropy generative adversarial network (HCEGAN). The self-attention mechanism was added and improved to focus on the important information of the image. And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models. In this study, we implement the HCEGAN model for image color rendering… More > Graphic Abstract

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

Displaying 21-30 on page 3 of 108. Per Page