Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Experimental Study for the Cementation Effect of Dust Soil by Using Soybean Urease

    Jianwei Zhang1, Yue Yin1, Lei Shi1, Yi Han2, Mi Zhou3,*, Xihong Zhang4

    Journal of Renewable Materials, Vol.11, No.6, pp. 2893-2911, 2023, DOI:10.32604/jrm.2023.025436

    Abstract Dust is an environmental and health hazard. In this study, a new technology for dust suppressant is introduced using soybean urease with an optimal cementing solution. Calcium carbonate is produced by soybean urease and cementing solution, which bonds the soil particles towards a dust suppressant. A laboratory wind tunnel test is carried out to examine its effectiveness and discover possible optimization solutions. Several factors, including soybean meal concentration, cementing solution concentration, and volume of solution per unit area, are examined to quantify their influences on soil transport mass, evaporation ratio, evaporation rate, surface strength, water retention ratio, and infiltration rate… More >

  • Open Access

    ARTICLE

    Evaluation of Water Transfer Capacity of Poplar with Pectinase Treated under the Solar Interface Evaporation

    Wei Xiong1,2, Dagang Li1,*, Peixing Wei2, Lin Wang2, Qian Feng1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2265-2278, 2023, DOI:10.32604/jrm.2023.025483

    Abstract Poplar wood, which was used as the absorption material for the solar-driven interfacial evaporation, was treated for 3 days, 6 days and 9 days with the pectinase, and then was simulated for photothermal evaporation test at one standard solar radiation intensity (1 kW⋅m−2). The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry, the scanning electron microscope and fractal theory. It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment. Compared with the untreated poplar wood, the evaporation… More >

  • Open Access

    REVIEW

    A Review on the Evaporation Dynamics of Sessile Drops of Binary Mixtures: Challenges and Opportunities

    Pradeep Gurrala1, Saravanan Balusamy1, Sayak Banerjee1, Kirti Chandra Sahu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 253-284, 2021, DOI:10.32604/fdmp.2021.014126

    Abstract The wetting and evaporation dynamics of sessile droplets have gained considerable attention over the last few years due to their relevance to many practical applications, ranging from a variety of industrial problems to several biological systems. Droplets made of binary mixtures typically undergo complex dynamics due to the differential volatility of the considered components and the ensuing presence of thermocapillary effects. For these reasons, many research groups have focused on the evaporation of binary droplets using a variegated set of experimental, numerical, and purely theoretical approaches. Apart from reviewing the state-of-the-art about the existing experimental, analytical, and computational techniques used… More >

  • Open Access

    ARTICLE

    Improved Thermal Efficiency of Salinity Gradient Solar Pond by Suppressing Surface Evaporation Using an Air Layer

    Asaad H. Sayer1, Hameed B. Mahood2,*

    Energy Engineering, Vol.117, No.6, pp. 367-379, 2020, DOI:10.32604/EE.2020.011156

    Abstract Salinity gradient solar ponds (SGSPs) provide a tremendous way to collect and store solar radiation as thermal energy, and can help meet the critical need for sustainable ways of producing fresh water. However, surface evaporation results in the loss of both water and heat. This study therefore theoretically investigates the effect on temperatures within an SGSP when its surface is covered with a layer of air encased in a nylon bag. An earlier SGSP model was slightly modified to add the air layer and to estimate the temperature distributions of the upper layer or the upper convective zone (UCZ) and… More >

  • Open Access

    Experimental Analysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volumetric and Isentropic Efficiency

    Daoming Shen1,2,*, Chao Gui1, Jinhong Xia1, Songtao Xue2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 489-500, 2020, DOI:10.32604/fdmp.2020.08969

    Abstract The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio. Moreover, the following influential factors have been taken into account: evaporation temperature, condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor. The following quantities have been selected as the unit performance measurement indicators: refrigeration capacity, energy efficiency ratio (COP), compressor power consumption, and refrigerant flow rate. The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature, increase… More >

  • Open Access

    ARTICLE

    Thermal Responses of Woods Exposed to High Temperatures Considering Apparent Thermo-Physical Properties

    Yun Zhang1, Lingfeng Zhang2, Zhiwei Shan3, Lu Wang1,*, Weiqing Liu1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1093-1108, 2019, DOI:10.32604/jrm.2019.07335

    Abstract It is well known that the use of woods as construction materials can embody carbon content of structural members, which can enhance the urban sustainability. However, due to the combustibility of wood, its current application is restricted. To broaden the application of wood, its thermal responses exposed to fire (high temperature) is investigated in this study. Firstly, the wood kinetic parameters are determined by coats-redfern method using thermal gravimetric (TGA) data. Secondly, the density and thermal conductivity are obtained from parallel and series models. Thirdly, the specific heat capacity formula is presented considering latent and decomposition heat, which can be… More >

  • Open Access

    ARTICLE

    Biocompatible Blends Based on Poly (Vinyl Alcohol) and Solid Organic Waste

    Antonio Greco*, Francesca Ferrari, Raffaella Striani, Carola Esposito Corcione

    Journal of Renewable Materials, Vol.7, No.10, pp. 1023-1035, 2019, DOI:10.32604/jrm.2019.07778

    Abstract This work is aimed at the development of new green composite materials through the incorporation of the solid organic waste (SOW) in a thermoplastic matrix. After being ground, the organic waste was exposed to a sterilization process, though an autoclave cycle, in order to obtain a complete removal of the bacterial activity. The SOW was found to have a high amount of water, about 65-70%, which made uneconomical its further treatment to reduce the water amount. Therefore, a water soluble polymer, poly (vinyl alcohol) (PVA) was chosen in order to produce SOW based blends. However, in order to reduce the… More >

  • Open Access

    ARTICLE

    Numerical Analysis on Unsteady Internal Flow in an Evaporating Droplet

    Zhentao Wang1,*, Kai Dong, Shuiqing Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 221-234, 2017, DOI:10.3970/fdmp.2017.013.221

    Abstract We have investigated the unsteady internal flow occurring in an evaporating droplet interacting with a high-temperature atmospheric environment. The Navier-Stokes equations for both the liquid and the gas phases have been solved numerically in the framework of a Volume of Fluid (VOF) method relying on the so-called Continuum Surface Force (CSF) model. A specific kernel able to account for evaporation and related phase change has been incorporated directly in the VOF approach. The temperature distributions within the droplet has been found to be relatively uniform by virtue of the Marangoni flow. The transient evolution of the flow pattern and related… More >

  • Open Access

    ARTICLE

    Analytical and Numerical Study of the Evaporation on Mixed Convection in aVertical Rectangular Cavity

    M. Ihdene1, T. Ben Malek2, S. Aberkane3, M. Mouderes4, P. Spiterri5, A. Ghezal2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 85-105, 2017, DOI:10.3970/fdmp.2017.013.085

    Abstract We consider an ascending laminar air flow in a vertical channel formed by two parallel flat plates wetted by a thin water film and under different temperature and concentration conditions. The study includes a numerical finite volume method for the treatment of the double diffusion problem, where the analytical solution is given to the thermal diffusion. The analytical study showed that the reversed flow is observed only under some wall temperature conditions and also for certain values of Re/Gr. The reversed flow is also strongly dependent on the aspect ratio A2, which is based on the cross section of the… More >

  • Open Access

    ARTICLE

    Droplet Behavior within an LPP Ambiance

    M. Chrigui1,2, L. Schneider1, A. Zghal2, A. Sadiki1, J. Janicka1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 399-408, 2010, DOI:10.3970/fdmp.2010.006.399

    Abstract This paper deals with the numerical simulation of droplet dispersion and evaporation within an LPP (Lean Premix Prevaporized) burner. The Eulerian-Lagrangian approach was used for this purpose, and a fully two way-coupling was accounted for. For the phase transition, a non-equilibrium evaporation model was applied that differs strongly from the equilibrium one where there are high evaporation rates. The non-equilibrium conditions were fulfilled in the investigated configuration, as the droplets at the inlet had a mean diameter of 50mm. The numerical results of water droplet velocities, corresponding fluctuations, and diameters were compared with experimental data. Good agreement was found. More >

Displaying 11-20 on page 2 of 22. Per Page