Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (236)
  • Open Access

    ARTICLE

    Sample Size Dependence of Crack-tip Microstructure and Stress Evolutions in Single Crystal Nickel

    Wen-Ping Wu1,2, Zong-Zhuan Yao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.4, pp. 235-252, 2013, DOI:10.3970/cmes.2013.093.235

    Abstract The internal microstructure evolution and atomic stress distribution around the crack tip of a pre-cracked single crystal nickel with unequal sample sizes are studied by molecular dynamics (MD) simulation. The simulated results indicate that the crack propagation dynamics and stress distributions around the crack tip are strongly dependent on the microstructure evolution caused by the change of sample size. Unequal sample sizes induce various atomic configurations around the crack tip during the crack propagation. When atomic configuration is invariable around the crack tip, the crack grows rapidly along the crack path, the stress concentration occurs at the crack tip of… More >

  • Open Access

    ARTICLE

    Self-Adaptive Differential Evolution Based on the Concept of Population Diversity Applied to Simultaneous Estimation of Anisotropic Scattering Phase Function, Albedo and Optical Thickness

    F. S. Lobato1, V. Steffen Jr2, A. J. Silva Neto3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.1, pp. 1-18, 2010, DOI:10.3970/cmes.2010.069.001

    Abstract Differential Evolution Algorithm (DE) has shown to be a powerful evolutionary algorithm for global optimization in a variety of real world problems. DE differs from other evolutionary algorithms in the mutation and recombination phases. Unlike some other meta-heuristic techniques such as genetic algorithms and evolutionary strategies, where perturbation occurs in accordance with a random quantity, DE uses weighted differences between solution vectors to perturb the population. Although the efficiency of DE algorithm has been proven in the literature, studies indicate that the efficiency of the DE methods is sensitive to its control parameters (perturbation rate and crossover rate) and there… More >

  • Open Access

    ARTICLE

    The Detection of Super-elliptical Inclusions in Infrared Computerised Axial Tomography

    N.S.Mera1, L. Elliott2, D.B.Ingham2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 107-114, 2006, DOI:10.3970/cmes.2006.015.107

    Abstract The purpose of this study is to investigate the efficiency, accuracy and rate of convergence of an evolutionary algorithm for detecting inclusions parametrised by superellipses in non-destructive evaluation and testing. The inverse problem investigated consists of identifying the geometry of discontinuities in a conductive material from Cauchy data measurements taken on the boundary. Temperature and heat flux are measured on the outside boundary of the domain and the position and the size of a super-elliptical inclusion are determined by minimising an objective functional using an evolution strategy. The super-elliptical form allows the parametric model to characterise a variety of shapes… More >

  • Open Access

    ARTICLE

    A Numerical Technique Based on Integrated RBFs for the System Evolution in Molecular Dynamics

    N. Mai-Duy1, T. Tran-Cong1, N. Phan-Thien2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 223-236, 2011, DOI:10.3970/cmes.2011.079.223

    Abstract This paper presents a new numerical technique for solving the evolution equations in molecular dynamics (MD). The variation of the MD system is represented by radial-basis-function (RBF) equations which are constructed using integrated multiquadric basis functions and point collocation. The proposed technique requires the evaluation of forces once per time step. Several examples are given to demonstrate the attractiveness of the present implementation. More >

  • Open Access

    ARTICLE

    The Configuration Evolution and Macroscopic Elasticity of Fluid-filled Closed Cell Composites: Micromechanics and Multiscale Homogenization Modelling

    Lianhua Ma1, Bernard F. Rolfe2, Qingsheng Yang1,3, Chunhui Yang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.2, pp. 131-158, 2011, DOI:10.3970/cmes.2011.079.131

    Abstract For fluid-filled closed cell composites widely distributed in nature, the configuration evolution and effective elastic properties are investigated using a micromechanical model and a multiscale homogenization theory, in which the effect of initial fluid pressure is considered. Based on the configuration evolution of the composite, we present a novel micromechanics model to examine the interactions between the initial fluid pressure and the macroscopic elasticity of the material. In this model, the initial fluid pressure of the closed cells and the corresponding configuration can be produced by applying an eigenstrain at the introduced fictitious stress-free configuration, and the pressure-induced initial microscopic… More >

  • Open Access

    ARTICLE

    Coupled Evolution of Damage and Fluid Flow in a Mandel-type Problem

    Eduardo T Lima Junior1, Wilson S Venturini2, Ahmed Benallal3

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 169-184, 2011, DOI:10.3970/cmes.2011.078.169

    Abstract Some considerations on the numerical analysis of brittle rocks are presented in this paper. The rock is taken as a poro-elastic domain, in full-saturated condition, based on the Biot's Theory. The solid matrix of this porous medium is considered to be susceptible to isotropic damage occurrence. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatics problems. The integration over boundary elements is evaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the… More >

  • Open Access

    ARTICLE

    Slow Rotation of an Axially Symmetric Particle about Its Axis of Revolution Normal to One or Two Plane Walls

    Yi W. Wan1, Huan J. Keh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.2, pp. 109-138, 2011, DOI:10.3970/cmes.2011.074.109

    Abstract The steady rotation of an axially symmetric particle about its axis of revolution normal to two plane walls at an arbitrary position between them in a viscous fluid is studied theoretically in the limit of small Reynolds number. The fluid is allowed to slip at the surface of the particle. A method of distribution of a set of spherical singularities along the axis of revolution inside a prolate particle or on the fundamental disk within an oblate particle is used to find the general solution for the fluid velocity distribution that satisfies the boundary conditions at the confining walls and… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithms Applied to Estimation of Thermal Property by Inverse Problem

    V.C. Mariani1, V. J. Neckel2, L. S. Coelho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.68, No.2, pp. 167-184, 2010, DOI:10.3970/cmes.2010.068.167

    Abstract In this study an inverse heat conduction problem using two optimization methods to estimate apparent thermal diffusivity at different drying temperatures is solved. Temperature and moisture versus time were obtained numerically using heat and mass transfer equations with drying temperatures in the range between 20°C to 70°C. The solution of the partial differential equation is made with a finite difference method coupled to optimization techniques of Differential Evolution (DE) and Particle Swarm Optimization (PSO) used in inverse problem. Statistical analysis shows no significant differences between reported and estimated curves, and no remarkable differences between results obtained using DE and PSO… More >

  • Open Access

    ARTICLE

    An Analysis of Backward Heat Conduction Problems Using the Time Evolution Method of Fundamental Solutions

    C.H. Tsai1, D.L. Young2, J. Kolibal3

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.1, pp. 53-72, 2010, DOI:10.3970/cmes.2010.066.053

    Abstract The time evolution method of fundamental solutions (MFS) is proposed to solve backward heat conduction problems (BHCPs). The time evolution MFS belongs to one of the mesh-free numerical methods and is essentially composed of a sequence of diffusion fundamental solutions which exactly satisfy the heat conduction equations. Through correct treatment of temporal evolution, the resulting system of the time evolution MFS is smaller, and effectively decreases the possibility of ill-conditioning induced by such strongly ill-posed problems. Both one-dimensional and two-dimensional BHCPs are examined in this study, and the numerical results demonstrate the accuracy and stability of the MFS, especially for… More >

  • Open Access

    ARTICLE

    Slow Motion of a General Axisymmetric Slip Particle Along Its Axis of Revolution and Normal to One or Two Plane Walls

    Huan J. Keh1, Yu C. Chang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.3, pp. 225-254, 2010, DOI:10.3970/cmes.2010.062.225

    Abstract A theoretical study of the Stokes flow caused by a rigid particle of revolution translating axisymmetrically perpendicular to two parallel plane walls at an arbitrary position between them in a viscous fluid, which may slip at the particle surface, is presented. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solution of the fluid velocity field that satisfies the boundary conditions at the plane walls and at infinity. The slip condition on the particle surface… More >

Displaying 211-220 on page 22 of 236. Per Page