Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    ASYMMETRIC FLOW OF A NANOFLUID BETWEEN EXPANDING OR CONTRACTING PERMEABLE WALLS WITH THERMAL RADIATION

    A. Vijayalakshmi, S. Srinivas*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.10

    Abstract In the present study, the flow and heat transfer characteristics of a nanofluid in an expanding or contracting porous channel with different permeabilities in presence of thermal radiation are investigated. Analytical solutions for the flow variables are obtained by employing homotopy analysis method (HAM). Maxwell-Garnetts and Brinkman models are considered to calculate the thermal conductivity and the viscosity of nanofluid. In this investigation, we considered water and ethylene glycol as base fluids and silver ( Ag ), copper ( Cu ), titanium dioxide ( TiO2 ) and alumina ( Al2O3 ) as nanoparticles. The effects of various emerging parameters on… More >

  • Open Access

    ARTICLE

    Optimization Analysis of the Mixing Chamber and Diffuser of Ejector Based on Fano Flow Model

    Lixing Zheng1,*, Weibo Wang2, Yiyan Zhang1, Lingmei Wang3, Wei Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 153-170, 2022, DOI:10.32604/cmes.2022.021235

    Abstract An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model, and a method to optimize the structures of the mixing chamber and diffuser of the ejector was put forward. The accuracy of the model was verified by comparing the theoretical results calculated using the model to experimental data reported in literature. Variations in the length of the mixing chamber Lm and length of the diffuser Ld with respect to variations in the outlet temperature of the ejector Tc, outlet pressure of the ejector pc, and the… More >

Displaying 1-10 on page 1 of 2. Per Page