Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber

    Zisheng Yang1, Wendong Li1, Xuelei Cheng1,2,*, Ran Hai1, Shunqun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2119-2130, 2023, DOI:10.32604/fdmp.2023.025444

    Abstract Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber. The tests have been conducted to analyze the liquid plastic limit, the particle distribution and the free expansion rate. The results show that: (1) With an increase in the cement-jute fiber content, the free expansion rate of the modified expansive soil gradually decreases, however, such a rate rebounds when the fiber content exceeds 0.5% and the cement content exceeds 6%. (2) With an increase in the cement percentage, the particle… More >

  • Open Access

    ARTICLE

    The Effect of Pore Solution on the Hysteretic Curve of Expansive Soil under Cyclic Loading

    Xinshan Zhuang*, Wu Wen, Rong Zhou, Gaoliang Tao, Wentao Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1963-1981, 2023, DOI:10.32604/fdmp.2023.026348

    Abstract A dynamic triaxial instrument was used to study the effects of different concentrations of sodium chloride and stress amplitudes on the dynamic properties of an expansive soil under cyclic loading. In particular, four parameters were considered in such a parametric investigation, namely, hysteresis curve morphology characteristic non-closure degree εp, the ratio of the short and long axis α, the slope of the long axis k and the enclosed area S. The results show that with an increase in the sodium chloride concentration, the soil particle double electric layer becomes thinner, the distance between soil particles decreases, and the whole sample… More >

  • Open Access

    ARTICLE

    Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement

    Waleed Awadalseed1, Honghua Zhao1, Hemei Sun2, Ming Huang3, Cong Liu4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1911-1935, 2023, DOI:10.32604/jrm.2023.025100

    Abstract This study examined the effects of using bagasse ash in replacement of ordinary Portland cement (OPC) in the treatment of expansive soils. The study concentrated on the compaction characteristics, volume change, compressive strength, splitting tensile strength, microstructure, California bearing ratio (CBR) value, and shear wave velocity of expansive soils treated with cement. Different bagasse ash replacement ratios were used to create soil samples. At varying curing times of 7, 14, and 28 days, standard compaction tests, unconfined compressive strength tests, CBR tests, Brazilian split tensile testing, and bender element (BE) tests were carried out. According to X-ray diffraction (XRD) investigations,… More >

  • Open Access

    ARTICLE

    Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions

    Yong Chen1, Yinghao Huang1,2,*, Min Wu1 and Shuo Wang1

    Journal of Renewable Materials, Vol.10, No.4, pp. 1153-1173, 2022, DOI:10.32604/jrm.2022.018856

    Abstract Phase change materials (PCMs) can store large amounts of energy in latent heat and release it during phase changes, which could be used to improve the freeze-thaw performance of soil. The composite phase change material was prepared with paraffin as the PCM and 8% Class C fly ash (CFA) as the supporting material. Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash (CFA-PCM) on the thermal properties, volume changes and mechanical properties of expansive soil. The results show that PCM failed to establish a good improvement effect due to leakage. CFA can… More >

  • Open Access

    ARTICLE

    Improved Geotechnical Behavior of an Expansive Soil Amended with Cationic Polyacrylamide

    Shengquan Zhou1, Minjie Shi1,*, Wei Chen1, Yongfei Zhang1, Weijian Wang1, Haojin Zhang1, Dongwei Li2

    Journal of Renewable Materials, Vol.9, No.11, pp. 1941-1957, 2021, DOI:10.32604/jrm.2021.015693

    Abstract The characteristics of soil treated with cationic polyacrylamide (CPAM) mass content of 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1% were investigated through a series of laboratory tests to explore the practical engineering effect of an expansive soil amended with environmental protection material CPAM. The results indicate that with the increasing CPAM content, the liquid limit and plasticity index of soil decrease, the plastic limit increases, and the free swelling ratio and loaded swelling ratio decrease. Besides, the improved soil has less disintegrating property and better water stability. The shear strength increases as the content increases, and the optimal content is… More > Graphic Abstract

    Improved Geotechnical Behavior of an Expansive Soil Amended with Cationic Polyacrylamide

  • Open Access

    ARTICLE

    Microscopic Simulation of Expansive Soils and Evolution Laws

    Lin Pan, Jinhong Xia, Hongxing Han*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1219-1228, 2020, DOI:10.32604/fdmp.2020.010545

    Abstract In this paper, the discrete element method (DEM) is used to study the microstructure of expansive soils. The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtained for a representative expansive soil. Biaxial compression tests are conducted for different confining pressures (50 kpa, 100 kpa, and 150 kpa). Attention is paid to the following aspects: deviatoric stress, boundary energy, friction energy, bond energy, strain energy, kinetic energy, and the contact force between grains when the test specimen is strained and to the effect of the different confining pressures on the internal crack… More >

  • Open Access

    ABSTRACT

    The Higher-Order Continuum Model and Its Application for Expansive Soil

    Yuzhou Sun1, Yuchao Mu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 115-115, 2019, DOI:10.32604/icces.2019.05304

    Abstract Due to its double-structure property, the higher-order continuum theory is adopted to study the constitutive behavior of expansive soil. The higher-order strain and scale factor are considered to describe the effect of the microscale structural property on the macroscale behavior, and a higher-order multiscale constitutive model is developed for expansive soil. The effect of the microscale structural property is investigated through the theoretical and experimental studies based on the developed model. In virtue of a representative elementary volume, the double-structure property is better studied for expansive soil. A variational equation is developed with the contribution of the liquid and gas… More >

Displaying 1-10 on page 1 of 7. Per Page