Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Development of a Multi-Resolution SPH-PD Model for Simulating Ice Sheet Fragmentation under Underwater Explosion Loads

    Guang-Qi Liang1, Peng-Nan Sun1,2,*, A-Man Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3405-3431, 2025, DOI:10.32604/cmes.2025.072496 - 23 December 2025

    Abstract A multi-resolution smoothed particle hydrodynamics and peridynamics (SPH-PD) coupling model is proposed in this study for simulating the fracture characteristics of ice plates exposed to underwater blast loads. The SPH model employs a volume adaptive scheme (VAS) and a multi-resolution particle technique to accurately simulate explosive charge detonation and shock wave propagation. This approach addresses numerical challenges from charge expansion and significant size disparity between the charge and the fluid particles. The model captures the full underwater explosion process, covering both the shock wave phase and the bubble expansion stage, by applying appropriate equations of More >

  • Open Access

    ARTICLE

    Directional Explosion of Finite Volume Water Confined in a Single-End-Opened CNT

    Jiahao Liu1,#, Yuanyuan Kang2,#, Kun Cai2,*, Haiyan Duan1, Jiao Shi3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2573-2586, 2025, DOI:10.32604/cmc.2025.066249 - 03 July 2025

    Abstract The directional explosion behavior of finite volume water confined within nanochannels holds considerable potential for applications in precision nanofabrication and bioengineering. However, precise control of nanoscale mass transfer remains challenging in nanofluidics. This study examined the dynamic evolution of water clusters confined within a single-end-opened carbon nanotube (CNT) under pulsed electric field (EF) excitation, with a particular focus on the structural reorganization of hydrogen bond (H-bond) networks and dipole orientation realignment. Molecular dynamics simulations reveal that under the influence of pulsed EF, the confined water molecules undergo cooperative restructuring to maximize hydrogen bond formation through… More > Graphic Abstract

    Directional Explosion of Finite Volume Water Confined in a Single-End-Opened CNT

  • Open Access

    ARTICLE

    SSA-LSTM-Multi-Head Attention Modelling Approach for Prediction of Coal Dust Maximum Explosion Pressure Based on the Synergistic Effect of Particle Size and Concentration

    Yongli Liu1,2, Weihao Li1,2,*, Haitao Wang1,2,3, Taoren Du4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2261-2286, 2025, DOI:10.32604/cmes.2025.064179 - 30 May 2025

    Abstract Coal dust explosions are severe safety accidents in coal mine production, posing significant threats to life and property. Predicting the maximum explosion pressure () of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions. In this study, a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations (), resulting in a dataset of 70 experimental groups. Through Spearman correlation analysis and random forest feature selection methods, particle size… More >

  • Open Access

    REVIEW

    Kinked Rebar and Engineering Structures Applying Kinked Materials: State-of-the-Art Review

    Chengquan Wang1,2, Lei Xu3, Xinquan Wang1, Yun Zou3,*, Kangyu Wang4, Boyan Ping5, Xiao Li1

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 233-263, 2025, DOI:10.32604/sdhm.2024.055096 - 15 January 2025

    Abstract Kinked rebar is a special type of steel material, which is installed in beam column nodes and frame beams. It effectively enhances the blast resilience, seismic collapse resistance, and progressive collapse resistance of reinforced concrete (RC) structures without imposing substantial cost burdens, thereby emerging as a focal point of recent research endeavors. On the basis of explaining the working principle of kinked rebars, this paper reviews the research status of kinked rebars at home and abroad from three core domains: the tensile mechanical properties of kinked rebars, beam column nodes with kinked rebars, and concrete… More >

  • Open Access

    ARTICLE

    Pressure Impulse during Explosive Boiling on the Surface of a High Temperature Melt in Water—Discussion of the Calculation Model

    Yuri Ivochkin1, Igor Teplyakov1, Oleg Sinkevich1,2, Sergei Shchigel1, Stepan Yudin1,2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1805-1821, 2024, DOI:10.32604/fhmt.2024.056787 - 19 December 2024

    Abstract This study explores the mechanism behind the generation of pressure pulses on the outer surface of a molten metal droplet when immersed in water. The absence of any external trigger is assumed, and the droplet is surrounded by a vapor layer with surface hydrodynamic waves at the vapor-liquid interface. The study examines the heating conditions of a cylindrical column of water used to model a volume of cold liquid interacting with a hot metal surface, which explosively boils upon direct contact. Within the framework of classical homogeneous nucleation theory, the relationship between pressure pulse magnitude… More >

  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction Model for Analysis Underwater Explosion Structural Damage Based on BDIM

    Biao Wang1, Yuxiang Peng1,*, Wenhua Xu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012061

    Abstract The damage process of ship structures under near-field underwater explosions involves strong nonlinear coupling effects of multiple media, and its numerical simulation poses a serious challenge to traditional numerical algorithms. Based on previous research, this article first establishes a highly compressible multiphase flow numerical calculation model based on the high-precision Discontinuous Galerkin Method (DGM) and a ship elastic-plastic damage dynamic model based on the meshless Reproducing Kernel Particle Method (RKPM). Furthermore, we develop an algorithm for grid-independent dynamic expansion of cracks. Based on this, the Boundary Data Immersion Method (BDIM) is used to couple the More >

  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    Far-Field Underwater Explosion Shock Wave Propagation Simulation Using the Three Dimensional Discontinuous Galerkin Method

    Zhaoxu Lian1,Wenbin Wu2,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011054

    Abstract The underwater explosion (UNDEX) could cause the fatal damage of naval ships and submarines in the naval battle, and seriously threaten their combat capability [1]. The UNDEX process is very complicated, including the propagation and reflection of the shock wave, formation and collapse of cavitation zone, trainset dynamic structural response and so on [2]. In this paper, we develop the three-dimensional Discontinuous Galerkin method (DGM) model for simulating the propagation of incident shock loading in fluid domain. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the More >

  • Open Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570 - 27 October 2023

    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is More >

  • Open Access

    PROCEEDINGS

    Evaluation of Blast Mitigation Effects of Cylindrical Explosion Containment Vessels Based on Foam

    Lei Yang1, Guangyan Huang1,2,*, Tao Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09759

    Abstract In order to evaluate the blast mitigation effect of polyurethane foam in cylindrical explosion containment vessels (CECVs), a three-dimensional numerical simulation model was established. The Structured Arbitrary Lagrange-Euler (S-ALE) algorithm was applied in current simulations to define the coupling contact between TNT and Lagrange algorithm. The numerical model was verified by comparing the dynamic deformation and permanent deformation of the experiments. Based on the numerical simulation model after verification, the influence of polyurethane foam filling inside CECVs on the mitigation effect was investigated. The results revealed that compared with the ALE algorithm, the numerical simulations… More >

Displaying 1-10 on page 1 of 29. Per Page