Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the Poisson's ratio of different types… More >

  • Open Access

    ARTICLE

    A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network

    Kyungsuk Jang1, Gun Jin Yun2,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1091-1120, 2021, DOI:10.32604/cmc.2020.012911

    Abstract This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests. Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation. The proposed method can overcome such practical challenges. The methodology is formalized by combining four ideas: 1) The deep learning neural network (DLNN)-based material constitutive model, 2) Self-learning inverse finite element (SELIFE) simulation, 3) Algorithmic identification of failure points from the self-learned stress-strain curves and 4) Derivation of the failure criteria through symbolic regression of the genetic programming. Stress… More >

  • Open Access

    ARTICLE

    Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling

    Hossein Bisheh1, 2, Yunhua Luo1, 3, Timon Rabczuk4, *

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 567-591, 2020, DOI:10.32604/cmc.2020.09393

    Abstract Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment. A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy, von-Mises stress, and von-Mises strain criteria during the single-leg stance and the sideways fall configurations. Choosing a proper failure criterion in hip fracture risk assessment is very important. The aim of this study is to define hip fracture risk index using the strain energy, von Mises stress, and von Mises strain criteria and compare the calculated fracture risk indices using… More >

  • Open Access

    ARTICLE

    Damage Propagation in Composite Structures using an Embedded Global-Local Approach

    A. Riccio1, M. Zarrelli2, F. Caputo1

    Structural Durability & Health Monitoring, Vol.9, No.1, pp. 21-42, 2013, DOI:10.32604/sdhm.2013.009.021

    Abstract In the present paper a three-dimensional Progressive Damage Approach (PDA) for laminated composites will be presented. This approach is based on the use of a progressive damage finite element with the geometrically non-linear finite element formulation for stress calculation. The FEM element has been integrated with Hashin's failure criteria to split fibre and matrix failure modes and to simulate stiffness degradation within each ply by means of the Ply Discount Method (PDM). FEM code previsions, in the case of complex structures with different mesh densities and element types, were compared with the results obtained using embedded global-local approach to prove… More >

  • Open Access

    ARTICLE

    Strength Failure Conditions of the Various Structural Materials: Is there some Common Basis existing?

    Ralf G. Cuntze1

    Structural Durability & Health Monitoring, Vol.3, No.2, pp. 87-106, 2007, DOI:10.3970/sdhm.2007.003.087

    Abstract The paper deals with the application of phenomenological, invariant-based strength conditions (fracture failure) and their interrelationships. The conditions have been generated and are just applied here for a variety of materials. These might possess a dense or a porous consistency, and belong to brittle and ductile behaving isotropic materials, brittle unidirectional laminae and brittle woven fabrics. The derivation of the conditions was based on the author's so-called Failure Mode Concept (FMC) which basically builds up on the hypotheses of Beltrami and Mohr-Coulomb.
    Essential topics of the paper are: 'global fitting' versus 'failure mode fitting', a short derivation of the FMC,… More >

  • Open Access

    ARTICLE

    Finite Element modeling of Nomex® honeycomb cores : Failure and effective elastic properties

    L. Gornet1, S. Marguet2, G. Marckmann3

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 63-74, 2006, DOI:10.3970/cmc.2006.004.063

    Abstract The purpose of the present study is to determine the components of the effective elasticity tensor and the failure properties of Nomex® honeycomb cores. In order to carry out this study, the NidaCore software, a program dedicated to Nomex®Cores predictions, has been developed using the Finite Element tool Cast3M-CEA. This software is based on periodic homogenization techniques and on the modelling of structural instability phenomena. The homogenization of the periodic microstructure is realized thanks to a strain energy approach. It assumes the mechanical equivalence between the microstructures of a RVE and a similar homogeneous macroscopic volume. The key point of… More >

  • Open Access

    ARTICLE

    A Cell Method Stress Analysis in Thin Floor Tiles Subjected to Temperature Variation

    E. Ferretti1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 293-322, 2013, DOI:10.3970/cmc.2013.036.293

    Abstract The Cell Method is applied in order to model the debonding mechanism in ceramic floor tiles subjected to positive thermal variation. The causes of thermal debonding, very usual in radiant heat floors, have not been fully clarified at the moment. There exist only a few simplified analytical approaches that assimilate this problem to an eccentric tile compression, but these approaches introduce axial forces that, in reality, do not exist. In our work we have abandoned the simplified closed form solution in favor of a numerical solution, which models the interaction between tiles and sub-base more realistically, when the positive thermal… More >

Displaying 1-10 on page 1 of 7. Per Page