Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ABSTRACT

    Fatigue Crack Growth Simulation using S-version FEM

    M. Kikuchi1, Y. Wada2, A. Utsunomiya3, Y. Li4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.2, pp. 67-72, 2008, DOI:10.3970/icces.2008.008.067

    Abstract Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be re-meshed and it becomes easy to simulate crack growth. By combining with auto-meshing technique, local mesh is re-meshed automatically, and curved crack path is modeled easily. Three dimensional surface crack problem is solved by this technique. Pure mode I crack and slant crack problems are solved, and fatigue crack growth processes are simulated. The change of aspect ratio of surface crack and distributions of stress intensity factor along crack front are evaluated and discussed. More >

  • Open Access

    ABSTRACT

    Probabilistic Modeling of Material Variability in Fatigue Crack Growth

    G. Renaud1, M. Liao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.2, pp. 87-92, 2007, DOI:10.3970/icces.2007.001.087

    Abstract This paper presents a probabilistic crack growth model developed for the Holistic Structural Integrity Process (HOLSIP) framework. Statistical data, obtained from testing and fractographic analyses of 2024-T3 test coupons, were used to derive the fatigue crack growth material variability. Results showed the relative impact of material variability in the short and long crack regimes. Monte Carlo simulations showed good agreement between analytical life distributions and test results. More >

  • Open Access

    ARTICLE

    Fatigue Crack Growth Behaviour of Nitrided and Shot Peened Specimens

    C. Colombo1, M. Guagliano1,2, L. Vergani1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 253-266, 2005, DOI:10.3970/sdhm.2005.001.253

    Abstract In this paper the fatigue crack growth properties of a nitrided and shot-peened steel is dealt with: different peening intensities were considered and the resulting residual stresses measured by means of an X-ray diffractometer. Rotating bending fatigue tests were executed on specimens including a blind micro hole, acting as a pre-existent crack. The fracture surface of broken specimens was observed with a SEM to detect the crack growth initiation point. The run-out specimens were broken after the test and the presence of non-propagating cracks detected. The results allowed to determine the propagation threshold of the More >

  • Open Access

    ARTICLE

    Computational Analysis of Surface and Subsurface Initiated Fatigue Crack Growth due to Contact Loading

    S. Glodež1, B. Aberšek1, G. Fajdiga2, J. Flašker2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 215-224, 2005, DOI:10.3970/sdhm.2005.001.215

    Abstract A computational model for simulation of surface and subsurface initiated fatigue crack growth due to contact loading is presented. The model is based on fracture mechanics theory where the required materials properties are obtained from common fatigue tests. For computational simulations an equivalent model of two contacting cylinders is used instead of simulating the actual contact of mechanical elements. The discretised model with the initial crack on or under the surface is then subjected to normal contact pressure, which takes into account the elasto-hydro-dynamic (EHD) lubrication conditions, and tangential loading due to friction between contacting More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Fatigue Crack Growth in Curved-Welded Joints Using Interface Elements

    M. S. Alam1, M.A. Wahab1,2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 171-184, 2005, DOI:10.3970/sdhm.2005.001.171

    Abstract Fatigue life of curved structural joints in ship structures under constant amplitude cyclic loading has been studied in this research. A new approach for the simulation of fatigue crack growth in welded joints has been developed and the concept has been applied to welded curved butt-joints. The phenomena of crack propagation and interface debonding can be regarded as the formation of new surfaces. Thus, it is possible to model these problems by introducing the mechanism of surface formation. In the proposed method, the formation of new surface is represented by interface element based on the… More >

  • Open Access

    ARTICLE

    Applications of DTALE: Damage Tolerance Analysis and Life Enhancement [3-D Non-plannar Fatigue Crack Growth]

    S. N. Atluri1

    Structural Durability & Health Monitoring, Vol.1, No.1, pp. 1-20, 2005, DOI:10.3970/sdhm.2005.001.001

    Abstract The solution of three-dimensional cracks (arbitrary surfaces of discontinuity) in solids and structures is considered. The BEM, developed based on the symmetric Galerkin BIEs, is used for obtaining the fracture solutions at the arbitrary crack-front. The finite element method is used to model the uncracked global (built-up) structure for obtaining the stresses in an otherwise uncracked body. The solution for the cracked structural component is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, and the SGBEM solution for the crack in the local finite-sized subdomain. In addition, some crack… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fatigue Crack Growth in Microelectronics Solder Joints

    K. Kaminishi1, M. Iino2, H. Bessho2, M. Taneda3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 107-110, 2000, DOI:10.3970/cmes.2000.001.107

    Abstract An FEA (finite element analysis) program employing a new scheme for crack growth analysis is developed and a prediction method for crack growth life is proposed. The FEA program consists of the subroutines for the automatic element re-generation using the Delaunay Triangulation technique, the element configuration in the near-tip region being provided by a super-element, elasto-inelastic stress analyses, prediction of crack extension path and calculation of fatigue life. The FEA results show that crack extension rate and path are controlled by a maximum opening stress range, Δσθmax, at a small radial distance of r = d, where More >

Displaying 21-30 on page 3 of 27. Per Page