Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (206)
  • Open Access

    ARTICLE

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

    Xiang Lin1,*, Jian Fang1, Ming Zhang1, Kuang Yin1, Yan Tian1, Yingfei Guo2, Qianggang Wang2

    Energy Engineering, Vol.121, No.5, pp. 1127-1141, 2024, DOI:10.32604/ee.2024.046861

    Abstract Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency (UHF) antennas for detecting partial discharge (PD) as a common precursor to faults. However, the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth, relatively large physical size, and low detection sensitivity. The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm × 100 mm × 1.6 mm. The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine… More > Graphic Abstract

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

  • Open Access

    ARTICLE

    Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions

    Siyuan Liu1,*, Jinying Huang2, Jiancheng Ma1, Licheng Jing2, Yuxuan Wang2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 761-777, 2024, DOI:10.32604/cmc.2024.049484

    Abstract Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems, such as relatively ideal speed conditions and sample conditions. In engineering practice, the rotational speed of the machine is often transient and time-varying, which makes the sample annotation increasingly expensive. Meanwhile, the number of samples collected from different health states is often unbalanced. To deal with the above challenges, a complementary-label (CL) adversarial domain adaptation fault diagnosis network (CLADAN) is proposed under time-varying rotational speed and weakly-supervised conditions. In the weakly supervised learning condition, machine prior information is used for sample annotation via cost-friendly complementary label learning.… More >

  • Open Access

    ARTICLE

    Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals

    Xukai Ren1,2,*, Huanwei Yu2, Xianfeng Chen2, Yantong Tang2, Guobiao Wang1,*, Xiyong Du2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 647-663, 2024, DOI:10.32604/cmes.2024.048782

    Abstract Stirred reactors are key equipment in production, and unpredictable failures will result in significant economic losses and safety issues. Therefore, it is necessary to monitor its health state. To achieve this goal, in this study, five states of the stirred reactor were firstly preset: normal, shaft bending, blade eccentricity, bearing wear, and bolt looseness. Vibration signals along x, y and z axes were collected and analyzed in both the time domain and frequency domain. Secondly, 93 statistical features were extracted and evaluated by ReliefF, Maximal Information Coefficient (MIC) and XGBoost. The above evaluation results were then fused by D-S evidence… More >

  • Open Access

    ARTICLE

    A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing

    Yong Ma1, Han Zhao2, Kunyin Guo3,*, Yunni Xia3,*, Xu Wang4, Xianhua Niu5, Dongge Zhu6, Yumin Dong7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 907-927, 2024, DOI:10.32604/cmes.2024.048759

    Abstract Mobile Edge Computing (MEC) is a technology designed for the on-demand provisioning of computing and storage services, strategically positioned close to users. In the MEC environment, frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery, ultimately enhancing the quality of the user experience. However, due to the typical placement of edge devices and nodes at the network’s periphery, these components may face various potential fault tolerance challenges, including network instability, device failures, and resource constraints. Considering the dynamic nature of MEC, making high-quality content caching decisions for real-time mobile applications, especially… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric… More >

  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined with transfer learning techniques, the… More >

  • Open Access

    ARTICLE

    Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics

    Hang Cui1, Hongbo Ren1,*, Qiong Wu1,2, Hang Lv1, Qifen Li1,2, Weisheng Zhou3

    Energy Engineering, Vol.121, No.3, pp. 581-601, 2024, DOI:10.32604/ee.2023.047470

    Abstract Cascading faults have been identified as the primary cause of multiple power outages in recent years. With the emergence of integrated energy systems (IES), the conventional approach to analyzing power grid cascading faults is no longer appropriate. A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance. In this study, an innovative analysis method for cascading faults in integrated heat and electricity systems (IHES) is proposed. It considers the degradation characteristics of transmission and energy supply components in the system to address the impact of component aging on cascading faults. Firstly, degradation models for the current carrying… More >

  • Open Access

    ARTICLE

    Fault Monitoring Strategy for PV System Based on I-V Feature Library

    Huaxing Zhao1, Yanbo Che1,*, Gang Wen2, Yijing Chen3

    Energy Engineering, Vol.121, No.3, pp. 643-660, 2024, DOI:10.32604/ee.2023.045204

    Abstract Long-term use in challenging natural conditions is possible for photovoltaic modules, which are extremely prone to failure. Failure to diagnose and address faults in Photovoltaic (PV) power systems in a timely manner can cause permanent damage to PV modules and, in more serious cases, fires. Therefore, research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety. Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems, this paper proposes a method for monitoring PV systems at… More >

  • Open Access

    ARTICLE

    Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis

    Kwok Tai Chui1,*, Brij B. Gupta2,3,4,5,6,*, Varsha Arya7,8,9, Miguel Torres-Ruiz10

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1363-1379, 2024, DOI:10.32604/cmc.2023.046762

    Abstract The visions of Industry 4.0 and 5.0 have reinforced the industrial environment. They have also made artificial intelligence incorporated as a major facilitator. Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure, and thus timely maintenance can ensure safe operations. Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model, which typically involves two datasets. In response to the availability of multiple datasets, this paper proposes using selective and adaptive incremental transfer learning (SA-ITL), which fuses three… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM

    Jiajie He1,2, Fuzheng Liu3, Xiangyi Geng3, Xifeng Liang1, Faye Zhang3,*, Mingshun Jiang3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 37-54, 2024, DOI:10.32604/sdhm.2023.029428

    Abstract Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods, making it challenging to ensure the fault diagnosis accuracy and reliability. A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator (ESGMD-CC) and artificial fish swarm algorithm (AFSA) optimized extreme learning machine (ELM) is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis. Firstly, SGMD decomposes the raw vibration signal into multiple Symplectic geometry components (SGCs). Secondly, the iterations are reset by the… More >

Displaying 1-10 on page 1 of 206. Per Page