Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Stator Winding Fault Detection and Classification in Three-Phase Induction Motor

    Majid Hussain1,2, Dileep Kumar1, Imtiaz Hussain Kalwar3, Tayab Din Memon4,5, Zubair Ahmed Memon6, Kashif Nisar7,*, Bhawani Shankar Chowdhry1

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 869-883, 2021, DOI:10.32604/iasc.2021.017790

    Abstract Induction motors (IMs) are the workhorse of the industry and are subjected to a harsh environment. Due to their operating conditions, they are exposed to different kinds of unavoidable faults that lead to unscheduled downtimes and losses. These faults may be detected early through predictive maintenance (i.e., deployment of condition monitoring systems). Motor current signature analysis (MCSA) is the most widely used technique to detect various faults in industrial motors. The stator winding faults (SWF) are one of the major faults. In this paper, we present an induction motor fault detection and identification system using… More >

  • Open Access

    ARTICLE

    Surge Fault Detection of Aeroengines Based on Fusion Neural Network

    Desheng Zheng1, Xiaolan Tang1,*, Xinlong Wu1, Kexin Zhang1, Chao Lu2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 815-826, 2021, DOI:10.32604/iasc.2021.017737

    Abstract Aeroengine surge fault is one of the main causes of flight accidents. When a surge occurs, it is hard to detect it in time and take anti-surge measures correctly. Recently, people have been applying detection methods based on mathematical models and expert knowledge. Due to difficult modeling and limited failure-mode coverage of these methods, early surge detection cannot be achieved. To address these problems, firstly, this paper introduced the data of six main sensors related to the aeroengine surge fault, such as, total pressure at compressor (high pressure rotor) outlet (Pt3), high pressure compressor rotor More >

  • Open Access

    ARTICLE

    GPS Vector Tracking Loop with Fault Detection and Exclusion

    Dah-Jing Jwo*, Meng-Hsien Hsieh

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1785-1805, 2021, DOI:10.32604/cmc.2021.017225

    Abstract In this paper, both the integrity monitoring and fault detection and exclusion (FDE) mechanisms are incorporated into the vector tracking loop (VTL) architecture of the Global Positioning System (GPS) receiver for reliability enhancement. For the VTL, the tasks of signal tracking and navigation state estimation no longer process separately and a single extended Kalman filter (EKF) is employed to simultaneously track the received signals and estimate the receiver’s position, velocity, etc. In contrast to the scalar tracking loop (STL) which utilizes the independent parallel tracking loop approach, the VTL technique is beneficial from the correlation… More >

  • Open Access

    ARTICLE

    Role of Fuzzy Approach towards Fault Detection for Distributed Components

    Yaser Hafeez1, Sadia Ali1, Nz Jhanjhi2, Mamoona Humayun3, Anand Nayyar4,5,*, Mehedi Masud6

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1979-1996, 2021, DOI:10.32604/cmc.2021.014830

    Abstract Component-based software development is rapidly introducing numerous new paradigms and possibilities to deliver highly customized software in a distributed environment. Among other communication, teamwork, and coordination problems in global software development, the detection of faults is seen as the key challenge. Thus, there is a need to ensure the reliability of component-based applications requirements. Distributed device detection faults applied to tracked components from various sources and failed to keep track of all the large number of components from different locations. In this study, we propose an approach for fault detection from component-based systems requirements using… More >

  • Open Access

    ARTICLE

    An Efficient Fuzzy Logic Fault Detection and Identification Method of Photovoltaic Inverters

    Mokhtar Aly1,2, Hegazy Rezk3,4,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2283-2299, 2021, DOI:10.32604/cmc.2021.014786

    Abstract Fuzzy logic control (FLC) systems have found wide utilization in several industrial applications. This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic (PV) inverters. Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere. Power converters represent the main parts for the grid integration of PV systems. However, PV power converters contain several power switches that construct their circuits. The power switches in PV systems are highly subjected… More >

  • Open Access

    ARTICLE

    Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification

    R. Uma Maheswari1,*, R. Umamaheswari2

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 479-488, 2020, DOI:10.32604/iasc.2020.013924

    Abstract To enhance the predictive condition-based maintenance (CBMS), a reliable automatic Drivetrain fault detection technique based on vibration monitoring is proposed. Accelerometer sensors are mounted on a wind turbine drivetrain at different spatial locations to measure the vibration from multiple vibration sources. In this work, multi-channel signals are fused and monocomponent modes of oscillation are reconstructed by the Multivariate Empirical Mode Decomposition (MEMD) Technique. Noise assisted methodology is adapted to palliate the mixing of modes with common frequency scales. The instantaneous amplitude envelope and instantaneous frequency are estimated with the Hilbert transform. Low order and high More >

  • Open Access

    ARTICLE

    A Reinforcement Learning System for Fault Detection and Diagnosis in Mechatronic Systems

    Wanxin Zhang1,*, Jihong Zhu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1119-1130, 2020, DOI:10.32604/cmes.2020.010986

    Abstract With the increasing demand for the automation of operations and processes in mechatronic systems, fault detection and diagnosis has become a major topic to guarantee the process performance. There exist numerous studies on the topic of applying artificial intelligence methods for fault detection and diagnosis. However, much of the focus has been given on the detection of faults. In terms of the diagnosis of faults, on one hand, assumptions are required, which restricts the diagnosis range. On the other hand, different faults with similar symptoms cannot be distinguished, especially when the model is not trained… More >

  • Open Access

    ARTICLE

    Acoustic Emission Recognition Based on a Two-Streams Convolutional Neural Network

    Weibo Yang1, Weidong Liu2, *, Jinming Liu3, Mingyang Zhang4

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 515-525, 2020, DOI:10.32604/cmc.2020.09801

    Abstract The Convolutional Neural Network (CNN) is a widely used deep neural network. Compared with the shallow neural network, the CNN network has better performance and faster computing in some image recognition tasks. It can effectively avoid the problem that network training falls into local extremes. At present, CNN has been applied in many different fields, including fault diagnosis, and it has improved the level and efficiency of fault diagnosis. In this paper, a two-streams convolutional neural network (TCNN) model is proposed. Based on the short-time Fourier transform (STFT) spectral and Mel Frequency Cepstrum Coefficient (MFCC) More >

  • Open Access

    ARTICLE

    Gear Fault Detection Analysis Method Based on Fractional Wavelet Transform and Back Propagation Neural Network

    Yanqiang Sun1, Hongfang Chen1,*, Liang Tang1, Shuang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 1011-1028, 2019, DOI:10.32604/cmes.2019.07950

    Abstract A gear fault detection analysis method based on Fractional Wavelet Transform (FRWT) and Back Propagation Neural Network (BPNN) is proposed. Taking the changing order as the variable, the optimal order of gear vibration signals is determined by discrete fractional Fourier transform. Under the optimal order, the fractional wavelet transform is applied to eliminate noise from gear vibration signals. In this way, useful components of vibration signals can be successfully separated from background noise. Then, a set of feature vectors obtained by calculating the characteristic parameters for the de-noised signals are used to characterize the gear More >

  • Open Access

    ARTICLE

    A Dynamic Independent Component Analysis Approach To Fault Detection With New Statistics

    M. Teimoortashloo1, A. Khaki Sedigh2,*

    Computer Systems Science and Engineering, Vol.33, No.1, pp. 5-20, 2018, DOI:10.32604/csse.2018.33.005

    Abstract This paper presents a fault detection method based on Dynamic Independent Component Analysis (DICA) with new statistics. These new statistics are statistical moments and first characteristic function that surrogate the norm operator to calculate the fault detection statistics to determine the control limit of the independent components (ICs). The estimation of first characteristic function by its series is modified such that the effect of series remainder on estimation is reduced. The advantage of using first characteristic function and moments, over second characteristic function and cumulants, as fault detection statistics is also presented. It is shown More >

Displaying 31-40 on page 4 of 41. Per Page