Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,287)
  • Open Access

    ARTICLE

    Biological Features of KLC2 Mutations in Chronic Myeloid Leukemia and Their Contribution to Inducing Drug Resistance

    Rabindranath Bera1,#, Yotaro Ochi2,3, Ying-Jung Huang1, Ming-Chung Kuo1,4, Kenichi Yoshida5, Seishi Ogawa2, Lee-Yung Shih1,4,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070259 - 30 December 2025

    Abstract Background: Breakpoint Cluster Region-Abelson (BCR::ABL1) fusion protein is essential in the pathogenesis of chronic myeloid leukemia (CML); however, the chronic-to-blast phase transformation remains elusive. We identified novel kinesin light chain 2 (KLC2) mutations in CML-myeloid blast phase patients. We aimed to examine the functional role of KLC2 mutations in leukemogenesis. Methods: To evaluate the biological role of KLC2 mutants (MT) in CML cells, we expressed KLC2-MT in different human CML cell lines harboring BCR::ABL1 and performed immunoblot, immunofluorescence, cell proliferation, differentiation, and apoptosis; Tyrosine kinase inhibitor (TKI)-drug activities; and clonogenic assays for in vitro functional analyses. We co-expressed KLC2-MTMore >

  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072494 - 09 December 2025

    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025

    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067759 - 09 December 2025

    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

  • Open Access

    ARTICLE

    A Virtual Probe Deployment Method Based on User Behavioral Feature Analysis

    Bing Zhang, Wenqi Shi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.067470 - 09 December 2025

    Abstract To address the challenge of low survival rates and limited data collection efficiency in current virtual probe deployments, which results from anomaly detection mechanisms in location-based service (LBS) applications, this paper proposes a novel virtual probe deployment method based on user behavioral feature analysis. The core idea is to circumvent LBS anomaly detection by mimicking real-user behavior patterns. First, we design an automated data extraction algorithm that recognizes graphical user interface (GUI) elements to collect spatio-temporal behavior data. Then, by analyzing the automatically collected user data, we identify normal users’ spatio-temporal patterns and extract their… More >

  • Open Access

    ARTICLE

    Pavement Crack Detection Based on Star-YOLO11

    Jiang Mi1, Zhijian Gan1, Pengliu Tan2,*, Xin Chang2, Zhi Wang2, Haisheng Xie2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069348 - 10 November 2025

    Abstract In response to the challenges in highway pavement distress detection, such as multiple defect categories, difficulties in feature extraction for different damage types, and slow identification speeds, this paper proposes an enhanced pavement crack detection model named Star-YOLO11. This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network. The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency. To enhance the accuracy of pavement crack detection and improve model efficiency, three key modifications to… More >

  • Open Access

    ARTICLE

    M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement

    Zhongliang Wei1,*, Jianlong An1, Chang Su2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069335 - 10 November 2025

    Abstract Images taken in dim environments frequently exhibit issues like insufficient brightness, noise, color shifts, and loss of detail. These problems pose significant challenges to dark image enhancement tasks. Current approaches, while effective in global illumination modeling, often struggle to simultaneously suppress noise and preserve structural details, especially under heterogeneous lighting. Furthermore, misalignment between luminance and color channels introduces additional challenges to accurate enhancement. In response to the aforementioned difficulties, we introduce a single-stage framework, M2ATNet, using the multi-scale multi-attention and Transformer architecture. First, to address the problems of texture blurring and residual noise, we design… More >

Displaying 1-10 on page 1 of 1287. Per Page