Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.5, pp. 437-471, 2016, DOI:10.3970/cmes.2016.111.437

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an "equivalent single layer high order shear deformation… More >

  • Open Access

    ARTICLE

    Hydro-thermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process

    M. Toujani1, R. Djebali2, L. Hassini1, S. Azzouz1, A. Belghith1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.5, pp. 469-485, 2014, DOI:10.3970/cmes.2014.098.469

    Abstract In the present work we aim to simulate unsteady two-dimensional evolution of the moisture content, temperature and mechanical stress in a parallelepiped apple sample during convective drying. The model is based on the heat and mass transfer equations and the mechanical equilibrium equation under the assumptions of plane deformation, viscoelasticity and isotropic hydric shrinkage. The Finite Elements COMSOL Multiphysics solver is used to solve the developed model. The hydro-thermal model was validated on experimental data drawn in our laboratory for moisture and temperature internal profiles of the product. Excellent agreement has been obtained between numerical and measured data for different… More >

  • Open Access

    ARTICLE

    Construction of an Edge Finite Element Space and a Contribution to the Mesh Selection in the Approximation of the Second Order Time Harmonic Maxwell System

    J. E. Sebold1, L. A. Lacerda2, J. A. M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 111-137, 2014, DOI:10.3970/cmes.2014.103.111

    Abstract This work is concerned with the development of the so-called Whitney and Nédélec edge finite element method for the solution of the time-harmonic Maxwell equations. Initially, the second order time harmonic Maxwell systems, as well as their variational formulation, are presented. In the sequence, Whitney and Nédélec element spaces, whose functions present continuous tangential components along the interface are built of adjacent elements. Then, numerical experiments validate the performance of Whitney and Nédélec first order elements in a two-dimensional domain. The discrete dispersion relation for the elements shows that the numerical phase velocity can be used as an error estimator.… More >

  • Open Access

    ARTICLE

    Modelling of the Frequency Response to Dynamic Nanoindentation of Soft Hydrated Anisotropic Materials: Application to Articular Cartilage

    Taffetani M.1, Bertarelli E.1,2, Gottardi R.3,4, Raiteri R.5, Vena P.1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 433-460, 2012, DOI:10.3970/cmes.2012.087.433

    Abstract Dynamic nanoindentation is a novel nanomechanical testing that is being increasingly used to characterize the frequency response of viscoelastic materials and of soft hydrated biological tissues at the micrometric and nanometric length scales. This technique is able to provide more information than those obtained by simple indentation; however, its interpretation is still an open issue for complex materials such as the case of anisotropic biological tissues that generally have a high water content. This work presents a numerical model to characterize the frequency response of poro-elastic tissues subjected to harmonic indentation loading with particular regard to the effect of geometrical… More >

  • Open Access

    ARTICLE

    Remeshing and Refining with Moving Finite Elements. Application to Nonlinear Wave Problems

    A. Wacher1, D. Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 147-164, 2006, DOI:10.3970/cmes.2006.015.147

    Abstract The recently proposed String Gradient Weighted Moving Finite Element (SGWMFE) method is extended to include remeshing and refining. The method simultaneously determines, at each time step, the solution of the governing partial differential equations and an optimal location of the finite element nodes. It has previously been applied to the nonlinear time-dependent two-dimensional shallow water equations, under the demanding conditions of large Coriolis forces, inducing large mesh and field rotation. Such effects are of major importance in geophysical fluid dynamics applications. Two deficiencies of the original SGWMFE method are (1) possible tangling of the mesh which causes the method's failure,… More >

  • Open Access

    ARTICLE

    Hierarchical Vector Finite Elements with p-Type non-Overlapping Schwarz Method for Modeling Waveguide Discontinuities

    Jin Fa Lee1, Robert Lee2, Fernando Teixeira3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 423-434, 2004, DOI:10.3970/cmes.2004.005.423

    Abstract This paper presents the application of a p-type Multiplicative Schwarz Method (pMUS) for solving three dimensional waveguide discontinuity with arbitrary shapes. The major ingredients of current approach are: a hierarchical curl-conforming basis functions that incorporates an in-exact Helmholtz decomposition; and, treating each polynomial space (or basis functions group) as an abstract grid/domain in the Schwarz method. Various numerical examples are studied using the proposed approach. The performance has been compared to currently available commercial software and demonstrated superior performance in terms of accuracy as well as efficiency. More >

  • Open Access

    ARTICLE

    Vibration Analysis of Curved Shell using B-spline Wavelet on the Interval (BSWI) Finite Elements Method and General Shell Theory

    Zhibo Yang1, Xuefeng Chen2, Bing Li1, Zhengjia He1, Huihui Miao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 129-156, 2012, DOI:10.3970/cmes.2012.085.129

    Abstract The implementation of the B-spline Wavelet on the Interval (BSWI) for curved shell elements with rectangular planform is presented in this paper. By aid of the general shell theory, cylinder shells, doubly-curved shallow shells and hyperbolic paraboloidal shells BSWI elements are formulated. Instead of traditional polynomial interpolation, scaling functions at certain scale have been adopted to form the shape functions and construct wavelet-based elements. Because of the good character of BSWI scaling functions, the BSWI curved shell elements combine the accuracy of wavelet-based elements approximation and the character of B-spline functions for structural analysis. Different from the flat shell elements,… More >

  • Open Access

    ARTICLE

    High-Performance 3D Hybrid/Mixed, and Simple 3D Voronoi Cell Finite Elements, for Macro- & Micro-mechanical Modeling of Solids, Without Using Multi-field Variational Principles

    P. L. Bishay1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 41-98, 2012, DOI:10.3970/cmes.2012.084.041

    Abstract Higher-order two-dimensional as well as low and higher-order three-dimensional new Hybrid/Mixed (H/M) finite elements based on independently assumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2, are developed here for applications in macro-mechanics. The idea of these new H/M finite elements is based on collocating the components of the independent strain field, with those derived from the independently assumed displacement fields at judiciously and cleverly chosen collocation points inside the element. This is unlike the other techniques used in older H/M finite elements where a two-field variational principle was used in order to enforce both equilibrium and compatibility conditions… More >

  • Open Access

    ARTICLE

    T-Trefftz Voronoi Cell Finite Elements with Elastic/Rigid Inclusions or Voids for Micromechanical Analysis of Composite and Porous Materials

    L. Dong1, S. N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 183-220, 2012, DOI:10.32604/cmes.2012.083.183

    Abstract In this paper, we develop T-Trefftz Voronoi Cell Finite Elements (VCF -EM-TTs) for micromechanical modeling of composite and porous materials. In addition to a homogenous matrix in each polygon-shaped element, three types of arbitrarily-shaped heterogeneities are considered in each element: an elastic inclusion, a rigid inclusion, or a void. In all of these three cases, an inter-element compatible displacement field is assumed along the element outer-boundary, and interior displacement fields in the matrix as well as in the inclusion are independently assumed as T-Trefftz trial functions. Characteristic lengths are used for each element to scale the T-Trefftz trial functions, in… More >

  • Open Access

    ARTICLE

    Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints

    K.I. Tserpes1, A.S. Koumpias1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 169-182, 2012, DOI:10.32604/cmes.2012.083.169

    Abstract In this work, a comparison between a cohesive zone model and a continuum damage model in predicting the mode-I fracture behavior of adhesively bonded joints is performed on the basis of reliability and applicability. The cohesive zone model (CZM) is based on an exponential traction law characterizing the behavior of the interface elements. The continuum damage model (CDM) is based on the stiffness degradation of adhesive elements imposed by a damage parameter. Both models have been implemented by means of a 3D finite element model. Mode-I fracture behavior of the bonded joints was characterized using the DCB specimen. Firstly, the… More >

Displaying 21-30 on page 3 of 53. Per Page