Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Experimental Study on the Flow Characteristics of a Plate with a Mechanically Choked Orifice

    Ming Liu1,2,3, Xingkai Zhang1,4, Dong Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 97-107, 2021, DOI:10.32604/fdmp.2021.011292

    Abstract The mechanically choked orifice plate (MCOP) is a new type of device for flow control by which choking conditions for incompressible fluids can be obtained with relatively small pressure losses. Given the lack of relevant results and data in the literature, in the present study, we concentrate on the experimental determination of the flow coefficient for the annular orifice, the pressure distribution in the MCOP, and the characteristics of the choked flow itself. As confirmed by the experimental results, the Reynolds number, the orifice plate thickness, the plug taper, and the eccentricity have an obvious influence on the aforementioned flow… More >

  • Open Access


    A Laboratory Investigation into the Fuel Atomization Process in a Diesel Engine for Different Configurations of the Injector Nozzles and Flow Conditions

    Mikhail G. Shatrov1, Valery I. Malchuk2, Andrey Y. Dunin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 747-760, 2020, DOI:10.32604/fdmp.2020.08991

    Abstract This paper reports a laboratory investigation of the fuel injection process in a diesel engine. The atomization process of the considered fuel (a hydrocarbon liquid) and the ensuing mixing with air is studied experimentally under high-pressure conditions. Different types of injector nozzles are examined, including (two) new configurations, which are compared in terms of performances to a standard injector manufactured by the Bosch company. For the two alternate con- figurations, the intake edges of one atomizing hole (hole No. 1) are located in the sack volume while for the other (hole No. 2) they are located on the locking cone… More >

Displaying 1-10 on page 1 of 2. Per Page