Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Machine Learning-Based Prediction of Oil-Water Flow Dynamics in Carbonate Reservoirs

    Xianhe Yue*, Shunshe Luo

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1195-1203, 2022, DOI:10.32604/fdmp.2022.020649

    Abstract Because carbonate rocks have a wide range of reservoir forms, a low matrix permeability, and a complicated seam hole formation, using traditional capacity prediction methods to estimate carbonate reservoirs can lead to significant errors. We propose a machine learning-based capacity prediction method for carbonate rocks by analyzing the degree of correlation between various factors and three machine learning models: support vector machine, BP neural network, and elastic network. The error rate for these three models are 10%, 16%, and 33%, respectively (according to the analysis of 40 training wells and 10 test wells). More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Hot Primary-Air Pipe Networks in Power Plant Milling Systems

    Qingyun Yan1, You Li2, Yuanhong Zhu3, Kui Cheng3, Xueli Huang3, Cong Qi3, Xuemin Ye2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 623-636, 2020, DOI:10.32604/fdmp.2020.09669

    Abstract A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations. The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations. In order to improve the properties of the air flow, in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system. As a result, the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are… More >

  • Open Access

    ARTICLE

    Influence of Clip Locations on Intraaneurysmal Flow Dynamics in Patient-specific Anterior Communicating Aneurysm Models with Different Aneurysmal Angle

    Lizhong Mu1, *, Qingzhuo Chi1, Changjin Ji2, Ying He1, Ge Gao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 175-197, 2018, DOI:10.31614/cmes.2018.04191

    Abstract To improve aneurysm treatment, this study examined the influence of clip locations on hemodynamic factors in patient-specific anterior communicating artery (ACoA) aneurysms with different aneurysmal angle. We proposed a simplified classification of ACoA aneurysms using aneurysmal angle, defined by the angle of pivot of the aneurysmal dome and the virtual two-dimensional plane created by both proximal A2 segments of anterior cerebral artery (ACA). ACoA aneurysms with three different aneurysmal angles, which are 15°, 80° and 120°, were analyzed in our study. In this work, we obtained hemodynamics before and after clipping surgery with three clip locations based on clinical clipping… More >

  • Open Access

    ARTICLE

    Flow dynamics in Models of Intracranial Terminal Aneurysms

    Alvaro Valencia1

    Molecular & Cellular Biomechanics, Vol.1, No.3, pp. 221-232, 2004, DOI:10.3970/mcb.2004.001.221

    Abstract Flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, and the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. This numerical investigation describes the hemodynamic in two models of terminal aneurysm of the basilar artery. Aneurysm models with a aspect ratio of 1.0 and 1.67 were studied. Each model was subject to physiological representative waveform of inflow for a mean Reynolds number of 560.… More >

Displaying 1-10 on page 1 of 4. Per Page