Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Numerical Simulation of the Influence of Water Flow on the Piers of a Bridge for Different Incidence Angles

    Danqing Huang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 845-854, 2023, DOI:10.32604/fdmp.2022.020314

    Abstract A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles. In particular, a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’ surface. The results show that the deflection of the flow is non-monotonic. It first increases and then decreases with an increase in the skew angle. More >

  • Open Access

    ARTICLE

    Simulation of Oil-Water Flow in Shale Oil Reservoirs Based on Smooth Particle Hydrodynamics

    Qin Qian1, Mingjing Lu1,2,*, Feng Wang3, Aishan Li1, Liaoyuan Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1089-1097, 2022, DOI:10.32604/fdmp.2022.019837

    Abstract A Smooth Particle Hydrodynamics (SPH) method is employed to simulate the two-phase flow of oil and water in a reservoir. It is shown that, in comparison to the classical finite difference approach, this method is more stable and effective at capturing the complex evolution of this category of two-phase flows. The influence of several smooth functions is explored and it is concluded that the Gaussian function is the best one. After 200 days, the block water cutoff for the Gaussian function is 0.3, whereas the other functions have a block water cutoff of 0.8. The effect of various injection ratios… More >

  • Open Access

    ARTICLE

    Two Phase Flow Simulation of Fractal Oil Reservoir Based on Meshless Method

    Xian Zhou1, Fei Wang2, Ziyu Wang3, Yunfeng Xu1,*

    Energy Engineering, Vol.119, No.2, pp. 653-664, 2022, DOI:10.32604/ee.2022.019072

    Abstract The reservoir is the networked rock skeleton of an oil and gas trap, as well as the generic term for the fluid contained within pore fractures and karst caves. Heterogeneity and a complex internal pore structure characterize the reservoir rock. By introducing the fractal permeability formula, this paper establishes a fractal mathematical model of oil-water two-phase flow in an oil reservoir with heterogeneity characteristics and numerically solves the mathematical model using the weighted least squares meshless method. Additionally, the method’s correctness is verified by comparison to the exact solution. The numerical results demonstrate that the fractal oil-water two-phase flow mathematical… More >

  • Open Access

    ARTICLE

    Flow Simulation of a Horizontal Well with Two Types of Completions in the Frame of a Wellbore–Annulus–Reservoir Model

    Qinghua Wang1, Junzheng Yang1, Wei Luo2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 215-233, 2021, DOI:10.32604/fdmp.2021.011914

    Abstract Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from or injected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screen completions and inflow control device (ICD) completions; moreover, an annular flow exists in the region between the pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the present study, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of the annular tubing and the reservoir seepage is… More >

  • Open Access

    ARTICLE

    Computational simulation of postoperative pulmonary flow distribution in Alagille patients with peripheral pulmonary artery stenosis

    Weiguang Yang1, Frank L. Hanley2, Frandics P. Chan3, Alison L. Marsden1,4, Irene E. Vignon-Clementel5, Jeffrey A. Feinstein1,4

    Congenital Heart Disease, Vol.13, No.2, pp. 241-250, 2018, DOI:10.1111/chd.12556

    Abstract Background: Up to 90% of individuals with Alagille syndrome have congenital heart diseases. Peripheral pulmonary artery stenosis (PPS), resulting in right ventricular hypertension and pulmonary flow disparity, is one of the most common abnormalities, yet the hemodynamic effects are illdefined, and optimal patient management and treatment strategies are not well established. The purpose of this pilot study is to use recently refined computational simulation in the setting of multiple surgical strategies, to examine the influence of pulmonary artery reconstruction on hemodynamics in this population.
    Materials and Methods: Based on computed tomography angiography and cardiac catheterization data, preoperative pulmonary artery models… More >

  • Open Access

    ARTICLE

    Hepatocyte culture in a radial-flow bioreactor with plasma polypyrrole coated scaffolds

    Odin RAMÍREZ-FERNÁNDEZ1,*, Rafael GODÍNEZ1, Esmeralda ZUÑIGA-AGUILAR1, Luis E. GÓMEZ-QUIROZ2, María C. GUTIÉRREZ-RUIZ2, Juan MORALES3, Roberto OLAYO3

    BIOCELL, Vol.39, No.2-3, pp. 9-14, 2015, DOI:10.32604/biocell.2015.39.009

    Abstract We have designed and evaluated a radial-flow bioreactor for three-dimensional liver carcinoma cell culture on a new porous coated scaffold. We designed a culture chamber where a radial flow of culture medium was continuously delivered through it. Once this system was established, flow was simulated using flow dynamics software based on numeric methods to solve Navier-Stockes flow equations. Perfusion within cell culture scaffolds was simulated using a flow velocity of 7 mL/min and found that cell culture medium was distributed unhindered in the bioreactor chamber. Afterwards, the bioreactor was built according to the simulated design and was tested with liver… More >

  • Open Access

    ARTICLE

    Design and development of a dual-flow bioreactor mimicking intestinal peristalsis and permeability in epithelial tissue barriers for drug transport assessment

    Odin RAMÍREZ-FERNÁNDEZ1,2,3,*, Ludovika CACOPARDO1, Benjamín LEON-MANCILLA2, Joana COSTA1

    BIOCELL, Vol.43, No.1, pp. 29-36, 2019, DOI:10.32604/biocell.2019.04790

    Abstract We present a bioreactor system which combines a semi permeable membrane that simulates the osmotic nutrients interchange in the small intestine circulation and rhythmic peristaltic movement. This custom-designed presents a semipermeable membrane bioreactor, with peristaltic flow and compression variation that allows adjustment of luminal flow rate. In addition, this system is also capable of achieving the drug distribution in the small intestine model from the apical compartment to the basal compartment by the semipermeable channel. This dynamic bioreactor can mimic the human small intestine with increased accuracy to overcome many of the limitations and accuracy with the previously described in… More >

  • Open Access

    ABSTRACT

    Wavelet BEM for large-scale Stokes flow simulation

    Jinyou Xiao, Wenjing Ye

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 101-102, 2011, DOI:10.3970/icces.2011.018.101

    Abstract Traditional boundary element methods (BEMs) suffer from densely populated system matrices. In recent years, acceleration techniques like the wavelet BEM (WBEM) have been developed which reduce the complexity considerably. In WBEM, one uses appropriate wavelet bases for the discretization, yielding numerically sparse matrices which result in extremely fast matrix-vector multiplications. However, in conventional WBEM the wavelets are constructed by uniform refinement of parametrically described patches. Such approaches have difficulties in dealing with practical problems with complicated geometries because patch-wise surface parameterization is generally not available. To avoid this limitation, Tausch proposed a method in [1] to construct wavelets directly on… More >

  • Open Access

    ABSTRACT

    Flow Simulations by a Particle Method Using Logarithmic Weighting Function

    K. Kakuda, J. Toyotani, S. Matsuda, H. Tanaka, K. Katagiri

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.4, pp. 105-106, 2011, DOI:10.3970/icces.2011.017.105

    Abstract The application of a particle method to incompressible viscous fluid flow problems is presented. The method is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic weighting function. Numerical results demonstrate the workability and the validity of the present approach through incompressible viscous fluid flow in a driven cavity and flow behavior in a liquid ring pump with rotating impeller blades. More >

  • Open Access

    ABSTRACT

    Finite element-based flow simulations using exponential weighting functions

    K. Kakuda1, Y. Maeda1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.1, pp. 37-42, 2010, DOI:10.3970/icces.2010.014.037

    Abstract The applications of a finite element scheme to one-dimensional linear advection-diffusion equation, the incompressible Navier-Stokes equations, and compressible Euler system of equations are presented. The mesh-based scheme is the Petrov-Galerkin weak formulation with exponential weighting functions. Some numerical results demonstrate the workability and the validity of the present approach. More >

Displaying 1-10 on page 1 of 23. Per Page