Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (136)
  • Open Access

    ARTICLE

    Effect of Porosity and Magnetic Field Dependent Viscosity on Revolving Ferrofluid Flow in the Presence of Stationary Disk

    Anupam Bh,ari1, Vipin Kumar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 359-375, 2014, DOI:10.3970/fdmp.2014.010.359

    Abstract The purpose of this paper is to study the flow characteristics of a ferrofluid revolving through a porous medium with a magnetic-field-dependent viscosity in the presence of a stationary disk. A Finite Difference Method is employed to discretize the set of nonlinear coupled differential equations involved in the problem. The discretized nonlinear equations, in turn, are solved by a Newton method (using MATLAB) taking the initial guess with the help of a PDE Solver. Results displayed in graphical form are used to assess the effect of the variable viscosity and porosity parameters on the velocity More >

  • Open Access

    ARTICLE

    Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows

    A. Mark1,2, R. Rundqvist1, F. Edelvik1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 241-258, 2011, DOI:10.3970/fdmp.2011.007.241

    Abstract In the literature immersed boundary methods are employed to simulate complex flows around moving arbitrary bodies without the necessity of remeshing. These methods employ a regular Eulerian mesh to simulate the fluid flow and a Lagrangian representation of the boundary of the bodies. The two representations can be coupled through an immersed boundary condition constraining the fluid to exactly follow the boundary of the bodies (immersed boundaries). Typically such methods suffer from accuracy problems, that arise from spurious mass fluxes over the immersed boundary (IB), pressure boundary conditions or high density ratios. The mirroring IB… More >

  • Open Access

    ARTICLE

    Scaffolds and Fluid Flow in Cardiac Tissue Engineering

    Milica Radisic1,2, Gordana Vunjak-Novakovic3

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 1-16, 2006, DOI:10.3970/fdmp.2006.002.001

    Abstract To engineer cardiac tissue in vitro with properties approaching those of native tissue, it is necessary to reproduce many of the conditions found in vivo. In particular, cell density must be sufficiently high to enable contractility, which implies a three-dimensional culture with a sufficient oxygen and nutrient supply. In this review, hydrogels and scaffolds that support high cell densities are examined followed by a discussion on the utility of scaffold perfusion to satisfy high oxygen demand of cardiomyocytes and an overview of new bioreactors developed in our laboratory to accomplish this task more simply. More >

  • Open Access

    ARTICLE

    Fluid Flow Behavior of a Binary Mixture Under the Influence of External Disturbances Using Different Density Models

    A. Parsa1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 27-50, 2012, DOI:10.3970/fdmp.2011.008.027

    Abstract Experiments onboard the International Space Station typically display undesired convective flow as a results of unwanted oscillatory g-jitters. A cubic rigid cell filled with water (90%) and isopropanol (10%) with a thermal gradient and forced vibrations is considered. The cell is under the influence of three different levels of periodic oscillation (Ravib ≈ 1.6, 650 and 4000) applied perpendicular to the temperature gradient. In this paper, we examine the transport process (fluid flow, heat transfer and mass transfer) due to oscillatory g-jitters in the presence of Soret effect. The full transient Navier Stokes equations coupled with More >

  • Open Access

    ARTICLE

    Adaptive 3D finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage

    Jacek Narski1,2, Marco Picasso1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 49-64, 2007, DOI:10.3970/fdmp.2007.003.049

    Abstract An adaptive phase field model for the solidification of binary alloys in three space dimensions is presented. The fluid flow in the liquid due to different liquid/solid densities is taken into account. The unknowns are the phase field, the alloy concentration and the velocity/pressure in the liquid. Continuous, piecewise linear finite elements are used for the space discretization, a semi-implicit scheme is used for time discretization. An adaptive method allows the number of degrees of freedom to be reduced, the mesh tetrahedrons having high aspect ratio whenever needed. Numerical results show that our method is More >

  • Open Access

    ARTICLE

    A High Resolution Pressure-Based Method for Compressible Fluid Flow

    M.H. Djavareshkian1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 329-342, 2005, DOI:10.3970/fdmp.2005.001.329

    Abstract A pressure-based Euler scheme, based on a collocated grid arrangement is described. The newly developed algorithm has two new prominent features: (i) the use of normalized variables to bound the convective fluxes and (ii) the use of a high-resolution scheme in calculating interface density values to enhance the shock-capturing property of the algorithm. The algorithm is first tested for flows at different Mach numbers ranging from subsonic to supersonic on a bump in a channel geometry; then the results are compared with the corresponding ones obtained without the bounded scheme in the correction step. The More >

Displaying 131-140 on page 14 of 136. Per Page