Table of Content

Open Access

ARTICLE

Scaffolds and Fluid Flow in Cardiac Tissue Engineering

Milica Radisic1,2, Gordana Vunjak-Novakovic3
Institute of Biomaterials and Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, Universityof Toronto. Havard-MIT Division of Health Science and Technology.
Massachusetts Institute of Technology
Correspondence author, Department of Biomedical Engineering, Columbia University, New York, NY 10027, Email:gv2131@columbia.edu

Fluid Dynamics & Materials Processing 2006, 2(1), 1-16. https://doi.org/10.3970/fdmp.2006.002.001

Abstract

To engineer cardiac tissue in vitro with properties approaching those of native tissue, it is necessary to reproduce many of the conditions found in vivo. In particular, cell density must be sufficiently high to enable contractility, which implies a three-dimensional culture with a sufficient oxygen and nutrient supply. In this review, hydrogels and scaffolds that support high cell densities are examined followed by a discussion on the utility of scaffold perfusion to satisfy high oxygen demand of cardiomyocytes and an overview of new bioreactors developed in our laboratory to accomplish this task more simply.

Cite This Article

Radisic, M., Vunjak-Novakovic, G. (2006). Scaffolds and Fluid Flow in Cardiac Tissue Engineering. FDMP-Fluid Dynamics & Materials Processing, 2(1), 1–16.



This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1085

    View

  • 811

    Download

  • 0

    Like

Share Link

WeChat scan