Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION HEAT AND MASS TRANSFER IN A VENTURI TUBE WITH WETTED WALLS

    S.W. Igoa,*, D.J. Bathiébob, K. Palma, K. N’wuitchac, B. Zeghmatid, X. Chesneaud

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-7, 2011, DOI:10.5098/hmt.v2.3.3007

    Abstract A combined heat and mass transfer in laminar forced convection flow in a rectangular venturi tube have been numerically simulated. A transformation has been used to transform the irregular profile of the venturi walls into a straight line. Transfers equations are solved using finite volume method, Gauss and Thomas algorithms. The influences of venturi effect, inlet Reynolds number and venturi diameter ratio on the heat and mass transfer are discussed in detail. Results presented as pressure gradient, Nusselt and Sherwood numbers profiles, velocity patterns and isotherms show that the throat play an important role on the heat an mass transfer… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF AIR FORCED CONVECTION IN A CHANNEL PROVIDED WITH INCLINED RIBS

    Oronzio Manca*, Sergio Nardini, Daniele Ricci

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-8, 2011, DOI:10.5098/hmt.v2.1.3007

    Abstract Convective heat transfer may be enhanced passively by adopting rough surfaces. Ribs break the laminar sub-layer and create local turbulence in the channel, reducing thermal resistance and enhancing the heat transfer. However, higher losses are expected. In this paper a numerical investigation is carried out on air forced convection in a rectangular ribbed channel. A three-dimensional model is developed to study the effect of the angle between the fluid flow direction and the ribbed surface, provided with rectangular turbulators, in the turbulent flow. Simulations s that Nusselt numbers as well as the pressure drops increase as the inclination angles increase. More >

  • Open Access

    ARTICLE

    THERMO-HYDRAULICS OF TUBE BANKS WITH POROUS INTERCONNECTORS USING WATER AS COOLING FLUID

    P. V. Ramana, Arunn Narasimhan*, Dhiman Chatterjee

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3007

    Abstract The present experimental study investigates the effect of tube-to-tube porous interconnectors on the pressure drop and heat transfer (Nu) of tube banks. A copper wire mesh porous medium connects successive tubes of the in-line and staggered arrangement of six rows of tubes. The tubes are subjected to constant and uniform heat flux and cooled by forced convection using water as a cooling fluid in the laminar flow range (100 < ReDuct < 625). The inline configuration with the tube-to-tube porous medium inter-connectors provides marginal enhancement of heat transfer and 12% reduction in the pressure drop penalty respectively, compared to tube… More >

  • Open Access

    ARTICLE

    An Investigation into Forced Convection of a Nanofluid Flowing in a Rectangular Microchannel under the Influence of a Magnetic Field

    Muataz S. Alhassan1, Ameer A. Alameri2, Andrés Alexis Ramírez-Coronel3, I. B. Sapaev4,5,6, Azher M. Abed7,*, David-Juan Ramos-Huallpartupa8, Rahman S. Zabibah9

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 311-323, 2024, DOI:10.32604/fdmp.2023.026782

    Abstract In line with recent studies, where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids, experiments have been conducted using water with cobalt ferrite/graphene nanoparticles. In particular, a circular channel made of copper subjected to a constant heat flux has been considered. As nanoparticles are sensitive to the presence of a magnetic field, different conditions have been examined, allowing both the strength and the frequency of such a field to span relatively wide ranges and assuming different concentrations of nanoparticles. According to the findings, the addition… More >

  • Open Access

    ARTICLE

    FORCED CONVECTION BOUNDARY LAYER STAGNATION-POINT FLOW IN DARCY-FORCHHEIMER POROUS MEDIUM PAST A SHRINKING SHEET

    Shahirah Abu Bakara, Norihan Md. Arifina,*, Roslinda Nazarb, Fadzilah Md. Alia, Ioan Popc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.38

    Abstract A mathematical model of forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium over a shrinking sheet is presentedin this paper. The governing partial differential equations are transformed into ordinary differential equation using self-similarity transformation which are then solved numerically with shooting method. A parametric study of the physical parameters involved in the problem is conducted and representative set of numerical results are presented through graphs and tables, and are discussed. More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION AND ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A MICROCHANNEL USING NANOFLUIDS BY THE LATTICE BOLTZMANN METHOD

    Rahouadja Zarita*, Madjid Hachemi

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-12, 2019, DOI:10.5098/hmt.12.5

    Abstract In this work, heat transfer enhancement in a microchannel using water-Ag nanofluid has been investigated numerically by the lattice Boltzmann method (LBM) by adopting the stream and collide algorithm, with the (BGK) approximation. The base fluid and the suspended nanoparticles are considered as a homogeneous mixture. And single phase model with first order slip and jump boundary conditions has been adopted. Thermophysical properties of water-Ag nanofluid are estimated by the theoretical models. Effects of change in nanoparticle volume fractions, Reynolds number and Knudsen number are considered. It was concluded that change in nanoparticle volume fractions did not have significant effects… More >

  • Open Access

    ARTICLE

    WALL HEAT FLUX PARTITIONING ANALYSIS FOR SUBCOOLED FLOW BOILING OF WATER-ETHANOL MIXTURE IN CONVENTIONAL CHANNEL

    B.G. Suhasa,* , A. Sathyabhamab, Kavadiki Veerabhadrappaa , R. Suresh Kumara, U. Kiran Kumara

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.16

    Abstract In the present study, heat transfer coefficient of water-ethanol mixture in the subcooled boiling region is determined in a rectangular conventional channel (Channel size ≥3 mm). When the heat flux and mass flux increase it is observed that heat transfer coefficient increases. But the effect of heat flux is significant when compared with that of mass flux in the subcooled boiling region. It is found that maximum and minimum heat transfer coefficient are observed for mixture with 25% Ethanol volume fraction and 75% Ethanol volume fraction respectively. Wall heat flux partitioning analyses is carried out for mixture with different ethanol… More >

  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION AND PERFORMANCE EVALUATION IN A SQUARE DUCT HEAT EXCHANGER PLACED WITH WAVY THIN RIB

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-15, 2020, DOI:10.5098/hmt.15.13

    Abstract Simulated examinations on convective heat transfer and flow topology in a square duct heat exchanger placed with wavy thin rib (WTR) are presented. The influences of WTR heights, pitch distances and flow directions on flow and heat transfer characteristics are investigated for the laminar flow regime at the inlet condition (Re = 100 – 2000). The finite volume method (SIMPLE algorithm) is picked to analyze the numerical problem. The numerical validations; grid independence and verification of the smooth duct, are presented. The simulated results of the heat exchanger duct placed with WTR are reported in terms of flow and heat… More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION FLOW OF HERSCHELBULKLEY FLUID IN CIRCULAR DUCT WITH AXIALLY VARIABLE WALL HEAT FLUX

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-11, 2020, DOI:10.5098/hmt.15.5

    Abstract The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and logarithmic functions are considered as examples. It… More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION DUCT FLOW OF HERSCHEL-BULKLEY FLUID WITH UNIFORM WALL TEMPERATURE OR CONVECTIVE BOUNDARY CONDITIONS

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-8, 2022, DOI:10.5098/hmt.19.23

    Abstract The aim is to study the asymptotic behavior of the temperature field for the laminar forced convection of a Herschel-Bulkley fluid flowing in a circular duct considering both viscous dissipation and axial heat conduction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distribution are evaluated analytically in the cases of uniform wall temperature and convection with an external isothermal fluid. In particular, it has been proved that the fully developed value of Nusselt number for convective boundary conditions is independent of the Biot number and is equal to the value of fully developed Nusselt… More >

Displaying 1-10 on page 1 of 22. Per Page