Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Integrated Experimental and Numerical Analysis of Particle Migration Effects on Produced Water Reinjection in Offshore Reservoirs

    Mengna Cheng1, Hao Guo2, Feng Cao2, Jie Gong1, Fengshuang Du1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2629-2650, 2025, DOI:10.32604/fdmp.2025.070344 - 30 October 2025

    Abstract Produced water reinjection is a common strategy in offshore oilfield operations, yet the presence of solid particles in produced water can lead to localized formation pressure buildup, increasing the risk of rock fracturing and leakage. In this study, we present an integrated experimental and numerical investigation to quantify the effects of particle migration on formation pressure and the spatial diffusion of injected water. Dynamic plugging experiments were performed to systematically examine the influence of injection rate and injection volume on core permeability. Results demonstrate that higher injection rates substantially reduce permeability, and the derived relationship More >

  • Open Access

    ARTICLE

    A Three-Dimensional Model for the Formation Pressure in Wellbores under Uncertainty

    Jiawei Zhang*, Qing Wang, Hongchun Huang, Haige Wang, Guodong Ji, Meng Cui, Hongyuan Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2305-2314, 2023, DOI:10.32604/fdmp.2023.026304 - 16 May 2023

    Abstract Formation pressure is the key parameter for the analysis of wellbore safety. With increasing drilling depth, however, the behavior of this variable becomes increasingly complex. In this work, a 3D model of the formation pressure under uncertainty is presented. Moreover a relevant algorithm is elaborated. First, the logging data of regional key drilling wells are collected and a one-dimensional formation pressure profile along the well depth is determined. Then, a 3D model of regional formation pressure of the hierarchical group layer is defined by using the Kriging interpolation algorithm relying on a support vector machine… More >

  • Open Access

    ARTICLE

    Analysis of the Applicability of a Risk Quantitative Evaluation Method to High Temperature-Pressure Drilling Engineering

    Renjun Xie1, Xingquan Zhang1, Baolun He2,*, Ningyu Zheng2, Yuqiang Xu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1385-1395, 2023, DOI:10.32604/fdmp.2023.025454 - 30 January 2023

    Abstract The optimization of methods for the quantitative evaluation of risks in drilling engineering is an effective means to ensure safety in situations where high temperature and high pressure blocks are considered. In such a context, this study analyzes the complexity of the drilled wells in such blocks. It is shown that phenomena such as well kick, loss, circulation, and sticking, are related to the imbalance of wellbore pressure. A method for risk quantitative evaluation is proposed accordingly. The method is used to evaluate the risk for 9 drilled wells. By comparing the predictions of the More > Graphic Abstract

    Analysis of the Applicability of a Risk Quantitative Evaluation Method to High Temperature-Pressure Drilling Engineering

Displaying 1-10 on page 1 of 3. Per Page