Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (673)
  • Open Access

    ARTICLE

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

    Fankun Meng1,2,3, Yuyang Liu1,2,*, Xiaohua Liu4, Chenlong Duan1,2, Yuhui Zhou1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075865 - 06 February 2026

    Abstract Carbonate gas reservoirs are often characterized by strong heterogeneity, complex inter-well connectivity, extensive edge or bottom water, and unbalanced production, challenges that are also common in many heterogeneous gas reservoirs with intricate storage and flow behavior. To address these issues within a unified, data-driven framework, this study develops a multi-block material balance model that accounts for inter-block flow and aquifer influx, and is applicable to a wide range of reservoir types. The model incorporates inter-well and well-group conductive connectivity together with pseudo–steady-state aquifer support. The governing equations are solved using a Newton–Raphson scheme, while particle More > Graphic Abstract

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

  • Open Access

    ARTICLE

    Exploring the Framework of Online Music Use for Motivation of Studies and Gratification Needs for Students’ Well-Being

    Muhammad Ali Malik1, Koo Ah Choo1,2, Hawa Rahmat3,*, Elyna Amir Sharji1,2, Teoh Sian Hoon4, Sabariah Eni5, Lim Kok Yoong6

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073109 - 28 January 2026

    Abstract Background: Music has proven to be vital in enhancing resilience and promoting well-being. Previously, the impact of music in sports environments was solely investigated, while this paper applies it to study environments, standing out as pioneering research. The study consists of a systematic development of a conceptual framework based on theories of Uses and Gratification Expectancy (UGE) and perceived motivation based on music elements. Their components are observed variables influencing students’ psychological well-being (as the dependent variable). Resilience is examined as a mediator, influencing the relationships of both observed and dependent variables. The main purpose of… More >

  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Integrating Carbonation Durability and Cover Scaling into Low-Carbon Concrete Design: A New Framework for Sustainable Slag-Based Mixtures

    Kang-Jia Wang1, Hongzhi Zhang2, Runsheng Lin3,*, Jiabin Li4, Xiao-Yong Wang1,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074787 - 29 January 2026

    Abstract Conventional low-carbon concrete design approaches have often overlooked carbonation durability and the progressive loss of cover caused by surface scaling, both of which can increase the long-term risk of reinforcement corrosion. To address these limitations, this study proposes an improved design framework for low-carbon slag concrete that simultaneously incorporates carbonation durability and cover scaling effects into the mix proportioning process. Based on experimental data, a linear predictive model was developed to estimate the 28-day compressive strength of slag concrete, achieving a correlation coefficient of R = 0.87711 and a root mean square error (RMSE) of… More >

  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    Hybrid Pythagorean Fuzzy Decision-Making Framework for Sustainable Urban Planning under Uncertainty

    Sana Shahab1, Vladimir Simic2,*, Ashit Kumar Dutta3,4, Mohd Anjum5,*, Dragan Pamucar6,7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073945 - 29 January 2026

    Abstract Environmental problems are intensifying due to the rapid growth of the population, industry, and urban infrastructure. This expansion has resulted in increased air and water pollution, intensified urban heat island effects, and greater runoff from parks and other green spaces. Addressing these challenges requires prioritizing green infrastructure and other sustainable urban development strategies. This study introduces a novel Integrated Decision Support System that combines Pythagorean Fuzzy Sets with the Advanced Alternative Ranking Order Method allowing for Two-Step Normalization (AAROM-TN), enhanced by a dual weighting strategy. The weighting approach integrates the Criteria Importance Through Intercriteria Correlation… More >

  • Open Access

    ARTICLE

    Analysis and Defense of Attack Risks under High Penetration of Distributed Energy

    Boda Zhang1,*, Fuhua Luo1, Yunhao Yu1, Chameiling Di1, Ruibin Wen1, Fei Chen2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.069323 - 27 January 2026

    Abstract The increasing intelligence of power systems is transforming distribution networks into Cyber-Physical Distribution Systems (CPDS). While enabling advanced functionalities, the tight interdependence between cyber and physical layers introduces significant security challenges and amplifies operational risks. To address these critical issues, this paper proposes a comprehensive risk assessment framework that explicitly incorporates the physical dependence of information systems. A Bayesian attack graph is employed to quantitatively evaluate the likelihood of successful cyber attacks. By analyzing the critical scenario of fault current path misjudgment, we define novel system-level and node-level risk coupling indices to precisely measure the… More >

  • Open Access

    REVIEW

    A Systematic Review of Frameworks for the Detection and Prevention of Card-Not-Present (CNP) Fraud

    Kwabena Owusu-Mensah*, Edward Danso Ansong , Kofi Sarpong Adu-Manu, Winfred Yaokumah

    Journal of Cyber Security, Vol.8, pp. 33-92, 2026, DOI:10.32604/jcs.2026.074265 - 20 January 2026

    Abstract The rapid growth of digital payment systems and remote financial services has led to a significant increase in Card-Not-Present (CNP) fraud, which is now the primary source of card-related losses worldwide. Traditional rule-based fraud detection methods are becoming insufficient due to several challenges, including data imbalance, concept drift, privacy concerns, and limited interpretability. In response to these issues, a systematic review of twenty-four CNP fraud detection frameworks developed between 2014 and 2025 was conducted. This review aimed to identify the technologies, strategies, and design considerations necessary for adaptive solutions that align with evolving regulatory standards.… More >

  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

Displaying 1-10 on page 1 of 673. Per Page