Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (692)
  • Open Access

    ARTICLE

    Multi-Algorithm Machine Learning Framework for Predicting Crystal Structures of Lithium Manganese Silicate Cathodes Using DFT Data

    Muhammad Ishtiaq1, Yeon-Ju Lee2, Annabathini Geetha Bhavani3, Sung-Gyu Kang1,*, Nagireddy Gari Subba Reddy2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.075957 - 10 February 2026

    Abstract Lithium manganese silicate (Li-Mn-Si-O) cathodes are key components of lithium-ion batteries, and their physical and mechanical properties are strongly influenced by their underlying crystal structures. In this study, a range of machine learning (ML) algorithms were developed and compared to predict the crystal systems of Li-Mn-Si-O cathode materials using density functional theory (DFT) data obtained from the Materials Project database. The dataset comprised 211 compositions characterized by key descriptors, including formation energy, energy above the hull, bandgap, atomic site number, density, and unit cell volume. These features were utilized to classify the materials into monoclinic… More >

  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    A Knowledge-Distilled CharacterBERT-BiLSTM-ATT Framework for Lightweight DGA Detection in IoT Devices

    Chengqi Liu1, Yongtao Li2, Weiping Zou3,*, Deyu Lin4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074975 - 10 February 2026

    Abstract With the large-scale deployment of the Internet of Things (IoT) devices, their weak security mechanisms make them prime targets for malware attacks. Attackers often use Domain Generation Algorithm (DGA) to generate random domain names, hiding the real IP of Command and Control (C&C) servers to build botnets. Due to the randomness and dynamics of DGA, traditional methods struggle to detect them accurately, increasing the difficulty of network defense. This paper proposes a lightweight DGA detection model based on knowledge distillation for resource-constrained IoT environments. Specifically, a teacher model combining CharacterBERT, a bidirectional long short-term memory More >

  • Open Access

    ARTICLE

    SSA*-PDWA: A Hierarchical Path Planning Framework with Enhanced A* Algorithm and Dynamic Window Approach for Mobile Robots

    Lishu Qin*, Yu Gao, Xinyuan Lu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074739 - 10 February 2026

    Abstract With the rapid development of intelligent navigation technology, efficient and safe path planning for mobile robots has become a core requirement. To address the challenges of complex dynamic environments, this paper proposes an intelligent path planning framework based on grid map modeling. First, an improved Safe and Smooth A* (SSA*) algorithm is employed for global path planning. By incorporating obstacle expansion and corner-point optimization, the proposed SSA* enhances the safety and smoothness of the planned path. Then, a Partitioned Dynamic Window Approach (PDWA) is integrated for local planning, which is triggered when dynamic or sudden… More >

  • Open Access

    ARTICLE

    Semi-Supervised Segmentation Framework for Quantitative Analysis of Material Microstructure Images

    Yingli Liu1,2, Weiyong Tang1,2, Xiao Yang1,2, Jiancheng Yin3,*, Haihe Zhou1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074681 - 10 February 2026

    Abstract Quantitative analysis of aluminum-silicon (Al-Si) alloy microstructure is crucial for evaluating and controlling alloy performance. Conventional analysis methods rely on manual segmentation, which is inefficient and subjective, while fully supervised deep learning approaches require extensive and expensive pixel-level annotated data. Furthermore, existing semi-supervised methods still face challenges in handling the adhesion of adjacent primary silicon particles and effectively utilizing consistency in unlabeled data. To address these issues, this paper proposes a novel semi-supervised framework for Al-Si alloy microstructure image segmentation. First, we introduce a Rotational Uncertainty Correction Strategy (RUCS). This strategy employs multi-angle rotational perturbations… More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    A Unified Feature Selection Framework Combining Mutual Information and Regression Optimization for Multi-Label Learning

    Hyunki Lim*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074138 - 10 February 2026

    Abstract High-dimensional data causes difficulties in machine learning due to high time consumption and large memory requirements. In particular, in a multi-label environment, higher complexity is required as much as the number of labels. Moreover, an optimization problem that fully considers all dependencies between features and labels is difficult to solve. In this study, we propose a novel regression-based multi-label feature selection method that integrates mutual information to better exploit the underlying data structure. By incorporating mutual information into the regression formulation, the model captures not only linear relationships but also complex non-linear dependencies. The proposed… More >

  • Open Access

    ARTICLE

    Unlocking Edge Fine-Tuning: A Sample-Efficient Language-Empowered Split Fine-Tuning Framework

    Zuyi Huang1, Yue Wang1, Jia Liu2, Haodong Yi1, Lejun Ai1, Min Chen1,3,*, Salman A. AlQahtani4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074034 - 10 February 2026

    Abstract The personalized fine-tuning of large language models (LLMs) on edge devices is severely constrained by limited computation resources. Although split federated learning alleviates on-device burdens, its effectiveness diminishes in few-shot reasoning scenarios due to the low data efficiency of conventional supervised fine-tuning, which leads to excessive communication overhead. To address this, we propose Language-Empowered Split Fine-Tuning (LESFT), a framework that integrates split architectures with a contrastive-inspired fine-tuning paradigm. LESFT simultaneously learns from multiple logically equivalent but linguistically diverse reasoning chains, providing richer supervisory signals and improving data efficiency. This process-oriented training allows more effective reasoning More >

  • Open Access

    ARTICLE

    Toward Secure and Auditable Data Sharing: A Cross-Chain CP-ABE Framework

    Ye Tian1,*, Zhuokun Fan1, Yifeng Zhang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073935 - 10 February 2026

    Abstract Amid the increasing demand for data sharing, the need for flexible, secure, and auditable access control mechanisms has garnered significant attention in the academic community. However, blockchain-based ciphertext-policy attribute-based encryption (CP-ABE) schemes still face cumbersome ciphertext re-encryption and insufficient oversight when handling dynamic attribute changes and cross-chain collaboration. To address these issues, we propose a dynamic permission attribute-encryption scheme for multi-chain collaboration. This scheme incorporates a multi-authority architecture for distributed attribute management and integrates an attribute revocation and granting mechanism that eliminates the need for ciphertext re-encryption, effectively reducing both computational and communication overhead. It More >

  • Open Access

    ARTICLE

    Scalable and Resilient AI Framework for Malware Detection in Software-Defined Internet of Things

    Maha Abdelhaq1, Ahmad Sami Al-Shamayleh2, Adnan Akhunzada3,*, Nikola Ivković4, Toobah Hasan5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073577 - 10 February 2026

    Abstract The rapid expansion of the Internet of Things (IoT) and Edge Artificial Intelligence (AI) has redefined automation and connectivity across modern networks. However, the heterogeneity and limited resources of IoT devices expose them to increasingly sophisticated and persistent malware attacks. These adaptive and stealthy threats can evade conventional detection, establish remote control, propagate across devices, exfiltrate sensitive data, and compromise network integrity. This study presents a Software-Defined Internet of Things (SD-IoT) control-plane-based, AI-driven framework that integrates Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks for efficient detection of evolving multi-vector, malware-driven botnet attacks.… More >

Displaying 1-10 on page 1 of 692. Per Page