Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Free Vibration Analysis of RC Box-Girder Bridges Using FEM

    Preeti Agarwal*, Priyaranjan Pal, Pradeep Kumar Mehta

    Sound & Vibration, Vol.56, No.2, pp. 105-125, 2022, DOI:10.32604/sv.2022.014874 - 25 March 2022

    Abstract The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method. The fundamental frequency is determined in straight, skew, curved and skew-curved box-girder bridges. It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature. At first, an existing model is considered to validate the present approach. A convergence study is carried out to decide the mesh size in the finite element method. An exhaustive parametric study is conducted to… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of FG-CNTRC Cylindrical Pressure Vessels Resting on Pasternak Foundation with Various Boundary Conditions

    Mohammad Arefi1, Masoud Mohammadi1, Ali Tabatabaeian1, Timon Rabczuk2, *

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1001-1023, 2020, DOI:10.32604/cmc.2020.08052

    Abstract This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites (FG-CNTRC). The vessel is under internal pressure and surrounded by a Pasternak foundation. This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations. The deformations and effectivemechanical properties of the reinforced structure were elicited from the first-order shear theory (FSDT) and rule of mixture, respectively. The main goal of this study is to show the effects of various design parameters such as boundary conditions, reinforcement distribution, foundation parameters, and More >

  • Open Access

    ARTICLE

    Exact Solutions of the Cubic Duffing Equation by Leaf Functions under Free Vibration

    Kazunori Shinohara1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 149-215, 2018, DOI:10.3970/cmes.2018.02179

    Abstract Exact solutions of the cubic Duffing equation with the initial conditions are presented. These exact solutions are expressed in terms of leaf functions and trigonometric functions. The leaf function r=sleafn(t) or r=cleafn(t) satisfies the ordinary differential equation dx2/dt2=-nr2n-1. The second-order differential of the leaf function is equal to -n times the function raised to the (2n-1) power of the leaf function. By using the leaf functions, the exact solutions of the cubic Duffing equation can be derived under several conditions. These solutions are constructed using the integral functions of leaf functions sleaf2(t) and cleaf2(t) for More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Rotating Timoshenko Beam: a Locking-Free Shape Function Formulation

    V. Panchore1, R. Ganguli2, S. N. Omkar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 215-237, 2015, DOI:10.3970/cmes.2015.108.215

    Abstract A rotating Timoshenko beam free vibration problem is solved using the meshless local Petrov-Galerkin method. A locking-free shape function formulation is introduced with an improved radial basis function interpolation and the governing differential equations of the Timoshenko beam are used instead of the alternative formulation used by Cho and Atluri (2001). The locking-free approximation overcomes the problem of ill conditioning associated with the normal approximation. The radial basis functions satisfy the Kronercker delta property and make it easier to apply the essential boundary conditions. The mass matrix and the stiffness matrix are derived for the More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Rotating Euler-Bernoulli Beam

    V. Panchore1, R. Ganguli2, S. N. Omkar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.5, pp. 353-373, 2015, DOI:10.3970/cmes.2015.104.353

    Abstract Free vibration problem of a rotating Euler-Bernoulli beam is solved with a truly meshless local Petrov-Galerkin method. Radial basis function and summation of two radial basis functions are used for interpolation. Radial basis function satisfies the Kronecker delta property and makes it simpler to apply the essential boundary conditions. Interpolation with summation of two radial basis functions increases the node carrying capacity within the sub-domain of the trial function and higher natural frequencies can be computed by selecting the complete domain as a sub-domain of the trial function. The mass and stiffness matrices are derived More >

  • Open Access

    ARTICLE

    A Continuum Shell Model Including van derWaals Interaction for Free Vibrations of Double-Walled Carbon Nanotubes

    Salvatore Brischetto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 305-327, 2015, DOI:10.3970/cmes.2015.104.305

    Abstract This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes (DWCNTs). A continuum elastic three-dimensional shell model is used for natural frequency investigation of simply supported DWCNTs. The 3D shell method is compared with beam analyses to show the applicability limits of 1D beam models. The effect of van der Waals interaction between the two cylinders is shown for different Carbon NanoTube (CNT) lengths and vibration modes. Results give the van der Waals interaction effect in terms of frequency values. In order to apply the 3D shell continuum model, DWCNTs are defined as two More >

  • Open Access

    ARTICLE

    Three-Dimensional Free Vibration Analysis of Sandwich FGM Cylinders with Combinations of Simply-Supported and Clamped Edges and Using the Multiple Time Scale and Meshless Methods

    Chih-Ping Wu, Ruei-Yong Jiang

    CMC-Computers, Materials & Continua, Vol.46, No.1, pp. 17-56, 2015, DOI:10.3970/cmc.2015.046.017

    Abstract An asymptotic meshless method using the differential reproducing kernel (DRK) interpolation and multiple time scale methods is developed for the three-dimensional (3D) free vibration analysis of sandwich functionally graded material (FGM) circular hollow cylinders with combinations of simply-supported and clamped edge conditions. In the formulation, we perform the mathematical processes of nondimensionalization, asymptotic expansion and successive integration to obtain recurrent sets of motion equations for various order problems. Classical shell theory (CST) is derived as a first-order approximation of the 3D elasticity theory, and the motion equations for higher-order problems retain the same differential operators… More >

  • Open Access

    ARTICLE

    Static, Free Vibration and Buckling Analysis of Functionally Graded Beam via B-spline Wavelet on the Interval and Timoshenko Beam Theory

    Hao Zuo1,2, Zhi-Bo Yang1,2,3, Xue-Feng Chen1,2, Yong Xie4, Xing-Wu Zhang1,2, Yue Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 477-506, 2014, DOI:10.3970/cmes.2014.100.477

    Abstract The application of B-spline wavelet on the interval (BSWI) finite element method for static, free vibration and buckling analysis in functionally graded (FG) beam is presented in this paper. The functionally graded material (FGM) is a new type of heterogeneous composite material with material properties varying continuously throughout the thickness direction according to power law form in terms of volume fraction of material constituents. Different from polynomial interpolation used in traditional finite element method, the scaling functions of BSWI are employed to form the shape functions and construct wavelet-based elements. Timoshenko beam theory and Hamilton’s… More >

  • Open Access

    ARTICLE

    Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method

    Hao Zuo1,2, Zhibo Yang1,2,3, Xuefeng Chen1,2, Yong Xie4, Xingwu Zhang1,2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 167-204, 2014, DOI:10.3970/cmc.2014.044.167

    Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses More >

Displaying 11-20 on page 2 of 41. Per Page