Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    The Controllability of Quantum Correlation under Geometry and Entropy Discords

    Xiaoyu Li1, Yiming Huang1, Qinsheng Zhu2,*, Xusheng Liu3, Desheng Zheng4

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3107-3120, 2021, DOI:10.32604/cmc.2021.012698 - 28 December 2020

    Abstract Quantum correlation plays a critical role in the maintenance of quantum information processing and nanometer device design. In the past two decades, several quantitative methods had been proposed to study the quantum correlation of certain open quantum systems, including the geometry and entropy style discord methods. However, there are differences among these quantification methods, which promote a deep understanding of the quantum correlation. In this paper, a novel time-dependent three environmental open system model is established to study the quantum correlation. This system model interacts with two independent spin-environments (two spin-environments are connected to the… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of Residual Water Content after Freezing during the Lyophilization of Platelets

    Shaozhi Zhang, Ruoyi Xie, Mengjie Xu, Guangming Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1177-1189, 2020, DOI:10.32604/fdmp.2020.010352 - 17 December 2020

    Abstract Pre-freezing is an important stage in freeze-drying processes. For the lyophilization of a cell, freezing not only plays a role for primary dehydration, but it also determines the amount of residual (intracellular or extracellular) water, which in turn can influence the solution properties and the choice of operation parameters. The freezing of human platelets in lyoprotectant solution is theoretically investigated here. A two-parameter model and an Arrhenius expression are used to describe cell membrane permeability and its temperature dependency. It is assumed that the intracellular solution is composed of four components: sodium chloride, trehalose, serum… More >

  • Open Access

    ARTICLE

    Research on the Freezing Phenomenon of Quantum Correlation by Machine Learning

    Xiaoyu Li1, Qinsheng Zhu2, *, Yiming Huang1, Yong Hu2, Qingyu Meng2, Chenjing Su1, Qing Yang2, Shaoyi Wu2, Xusheng Liu3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2143-2151, 2020, DOI:10.32604/cmc.2020.010865 - 16 September 2020

    Abstract Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics, especially in the field of quantum information. Quantum correlations of the composite system can be quantified by resorting to geometric or entropy methods, and all these quantification methods exhibit the peculiar freezing phenomenon. The challenge is to find the characteristics of the quantum states that generate the freezing phenomenon, rather than only study the conditions which generate this phenomenon under a certain quantum system. In essence, this is a classification problem. Machine learning has become an effective More >

  • Open Access

    ARTICLE

    A New Model for the Characterization of Frozen Soil and Related Latent Heat Effects for the Improvement of Ground Freezing Techniques and Its Experimental Verification

    Daoming Shen1, Hua Si1,*, Jinhong Xia1, Shunqun Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 63-76, 2019, DOI:10.32604/fdmp.2019.04799

    Abstract The correct determination of thermal parameters, such as thermal conductivity and specific heat of soil during freezing, is the most important and basic problem for the construction of an appropriate freezing method. In this study, a calculation model of three stages of soil temperature was established. At the unfrozen and frozen stages, the specific temperatures of dry soil, water, and ice are known. According to the principle of superposition, a calculation model of unfrozen and frozen soils can be established. Informed by a laboratory experiment, the latent heat of the adjacent zone was calculated for More >

  • Open Access

    ARTICLE

    Seed germination after freezing in high-mountain plant species: Implications for ski-run restoration

    Díaz-Miguel M1, J Castro2, PA García3

    Phyton-International Journal of Experimental Botany, Vol.83, pp. 423-429, 2014, DOI:10.32604/phyton.2014.83.423

    Abstract The construction of a ski slope implies a strong environmental impact as a result of the removal of the vegetation cover. The need to protect the soil requires a rapid restoration of vegetation, which is often done with commercial seed mixtures that can cause a negative impact on these high mountain ecosystems. Thus, the use of seeds of native species is essential, especially in areas rich in endemic species. The compaction of snow as a result of the preparation of the ski slopes causes the soil to freeze. This hinders the germination of seeds, especially More >

  • Open Access

    ARTICLE

    Isolation and molecular characterization of a cax gene from Capsella bursa-pastoris

    JUAN LIN1, WEN ZHANG1, MINGZHU SHI1, XINGLONG WANG1, XIAOFEN SUN1, KEXUAN TANG1,2

    BIOCELL, Vol.32, No.3, pp. 229-235, 2008, DOI:10.32604/biocell.2008.32.229

    Abstract A new cation exchangers (CAXs) gene was cloned and characterized from Capsella bursapastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence of cax from C. bursa-pastoris (designated as Cbcax51) was 1754 bp containing a 1398 bp open reading frame encoding a polypeptide of 466 amino-acid residues with a calculated molecular mass of 50.5 kDa and an isoelectric point of 5.69. The predicted CbCAX51 contained an IMP dehydrogenase/GMP reductase domain, two Na+/Ca2+ exchanger protein domains. Comparative and bioinformatics analyses revealed that CbCAX51 showed extensive homology with CAX from other plant species. The expression analysis by different treatments More >

  • Open Access

    ARTICLE

    A Meshless Approach Based upon Radial Basis Function Hermite Collocation Method for Predicting the Cooling and the Freezing Times of Foods

    A. La Rocca1, H. Power1, V. La Rocca2, M. Morale2

    CMC-Computers, Materials & Continua, Vol.2, No.4, pp. 239-250, 2005, DOI:10.3970/cmc.2005.002.239

    Abstract This work presents a meshless numerical scheme for the solution of time dependent non linear heat transfer problems in terms of a radial basis function Hermite collocation approach. The proposed scheme is applied to foodstuff's samples during freezing process; evaluation of the time evolution of the temperature profile along the sample, as well as at the core, is carried out. The moving phase-change zone is identified in the domain and plotted at several timesteps. The robustness of the proposed scheme is tested by a comparison of the obtained numerical results with those found using a More >

Displaying 11-20 on page 2 of 17. Per Page