Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5625-5642, 2025, DOI:10.32604/cmc.2025.069636 - 23 October 2025

    Abstract Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance. This method effectively integrates prior knowledge using pre-labeled data. While semi-supervised fuzzy clustering (SSFC) methods leverage limited labeled data to enhance accuracy, they remain highly susceptible to inappropriate or mislabeled prior knowledge, especially in noisy or overlapping datasets where cluster boundaries are ambiguous. To enhance the effectiveness of clustering algorithms, it is essential to leverage labeled data while ensuring the safety of the previous knowledge. Existing solutions, such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method (TS3FCM),… More >

  • Open Access

    ARTICLE

    An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5341-5357, 2025, DOI:10.32604/cmc.2025.068299 - 23 October 2025

    Abstract Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data, guided by active learning, to enhance classification accuracy, particularly in complex and ambiguous datasets. Although several active semi-supervised fuzzy clustering methods have been developed previously, they typically face significant limitations, including high computational complexity, sensitivity to initial cluster centroids, and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters. This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify, analyze, and correct misclassified boundary elements. By strategically utilizing labeled data through active learning, our More >

  • Open Access

    ARTICLE

    Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data

    Zhe Liu1,2,*, Jiahao Shi3, Dania Santina4, Yulong Huang1, Nabil Mlaiki4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3531-3555, 2025, DOI:10.32604/cmes.2025.071145 - 30 September 2025

    Abstract The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations. However, traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data, as they rely on a single-dimensional membership value. To overcome these limitations, we propose an auto-weighted multi-view neutrosophic fuzzy clustering (AW-MVNFC) algorithm. Our method leverages the neutrosophic framework, an extension of fuzzy sets, to explicitly model imprecision and ambiguity through three membership degrees. The core novelty of AW-MVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions More >

  • Open Access

    ARTICLE

    Relative-Density-Viewpoint-Based Weighted Kernel Fuzzy Clustering

    Yuhan Xia1, Xu Li1, Ye Liu1, Wenbo Zhou2, Yiming Tang1,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 625-651, 2025, DOI:10.32604/cmc.2025.065358 - 09 June 2025

    Abstract Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology. The combination of domain knowledge and fuzzy clustering algorithms has some problems, such as initialization sensitivity and information granule weight optimization. Therefore, we propose a weighted kernel fuzzy clustering algorithm based on a relative density view (RDVWKFC). Compared with the traditional density-based methods, RDVWKFC can capture the intrinsic structure of the data more accurately, thus improving the initial quality of the clustering. By introducing a Relative Density based Knowledge Extraction Method (RDKM) and adaptive weight optimization mechanism, we effectively solve the… More >

  • Open Access

    ARTICLE

    Multi-View Picture Fuzzy Clustering: A Novel Method for Partitioning Multi-View Relational Data

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Luong Thi Hong Lan4, Nguyen Tuan Huy4, Nguyen Long Giang1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5461-5485, 2025, DOI:10.32604/cmc.2025.065127 - 19 May 2025

    Abstract Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex, high-dimensional data that single-view methods cannot capture. Traditional fuzzy clustering techniques, such as Fuzzy C-Means (FCM), face significant challenges in handling uncertainty and the dependencies between different views. To overcome these limitations, we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data, aiming to enhance clustering accuracy and robustness, termed Multi-view Picture Fuzzy Clustering (MPFC). In particular, the picture fuzzy set theory extends the capability to… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360 - 15 May 2024

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral… More >

  • Open Access

    ARTICLE

    Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering

    Xiangqun Li1,*, Jiawen Liang2, Jinyu Zhu2, Shengping Shi2, Fangyu Ding2, Jianpeng Sun2, Bo Liu2

    Energy Engineering, Vol.121, No.1, pp. 203-219, 2024, DOI:10.32604/ee.2023.029295 - 27 December 2023

    Abstract To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis, this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition (VMD), fuzzy entropy (FE) and fuzzy clustering (FC). Firstly, based on the OTDR curve data collected in the field, VMD is used to extract the different modal components (IMF) of the original signal and calculate the fuzzy entropy (FE) values of different components to characterize the subtle differences between them. The fuzzy entropy of each curve is used More >

  • Open Access

    ARTICLE

    Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering for Noisy Data

    Pham Huy Thong1,2,3, Florentin Smarandache4, Phung The Huan5, Tran Manh Tuan6, Tran Thi Ngan6,*, Vu Duc Thai5, Nguyen Long Giang2, Le Hoang Son3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1981-1997, 2023, DOI:10.32604/csse.2023.035692 - 09 February 2023

    Abstract Clustering is a crucial method for deciphering data structure and producing new information. Due to its significance in revealing fundamental connections between the human brain and events, it is essential to utilize clustering for cognitive research. Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties. Noisy data can lead to incorrect object recognition and inference. This research aims to innovate a novel clustering approach, named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering (PNTS3FCM), to solve the clustering problem with noisy data… More >

  • Open Access

    ARTICLE

    Energy-Efficient Routing Protocol with Multi-Hop Fuzzy Logic for Wireless Networks

    J. Gobinath1,*, S. Hemajothi2, J. S. Leena Jasmine3

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2457-2471, 2023, DOI:10.32604/iasc.2023.031171 - 05 January 2023

    Abstract A Wireless Sensor Network (WSN) becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable. Concerning the energy production of the nodes, WSN has major issues that may influence the stability of the system. As a result, constructing WSN requires devising protocols and standards that make the most use of constrained capacity, especially the energy resources. WSN faces some issues with increased power utilization and an on going development due to the uneven energy usage between the nodes. Clustering has… More >

  • Open Access

    ARTICLE

    Deep Fake Detection Using Computer Vision-Based Deep Neural Network with Pairwise Learning

    R. Saravana Ram1, M. Vinoth Kumar2, Tareq M. Al-shami3, Mehedi Masud4, Hanan Aljuaid5, Mohamed Abouhawwash6,7,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2449-2462, 2023, DOI:10.32604/iasc.2023.030486 - 19 July 2022

    Abstract Deep learning-based approaches are applied successfully in many fields such as deepFake identification, big data analysis, voice recognition, and image recognition. Deepfake is the combination of deep learning in fake creation, which states creating a fake image or video with the help of artificial intelligence for political abuse, spreading false information, and pornography. The artificial intelligence technique has a wide demand, increasing the problems related to privacy, security, and ethics. This paper has analyzed the features related to the computer vision of digital content to determine its integrity. This method has checked the computer vision More >

Displaying 1-10 on page 1 of 24. Per Page