Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Towards Improving Predictive Statistical Learning Model Accuracy by Enhancing Learning Technique

    Ali Algarni1, Mahmoud Ragab2,3,4,*, Wardah Alamri5, Samih M. Mostafa6

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 303-318, 2022, DOI:10.32604/csse.2022.022152

    Abstract The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values. In most research studies, the existence of missing values (MVs) is a vital problem. In addition, any dataset with MVs cannot be used for further analysis or with any data driven tool especially when the percentage of MVs are high. In this paper, the authors propose a novel algorithm for dealing with MVs depending on the feature selection (FS) of similarity classifier with fuzzy entropy measure. The proposed algorithm imputes MVs in cumulative order. The candidate feature to be… More >

  • Open Access


    Semi/Fully-Automated Segmentation of Gastric-Polyp Using Aquila-Optimization-Algorithm Enhanced Images

    Venkatesan Rajinikanth1, Shabnam Mohamed Aslam2, Seifedine Kadry3, Orawit Thinnukool4,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4087-4105, 2022, DOI:10.32604/cmc.2022.019786

    Abstract The incident rate of the Gastrointestinal-Disease (GD) in humans is gradually rising due to a variety of reasons and the Endoscopic/Colonoscopic-Image (EI/CI) supported evaluation of the GD is an approved practice. Extraction and evaluation of the suspicious section of the EI/CI is essential to diagnose the disease and its severity. The proposed research aims to implement a joint thresholding and segmentation framework to extract the Gastric-Polyp (GP) with better accuracy. The proposed GP detection system consist; (i) Enhancement of GP region using Aquila-Optimization-Algorithm supported tri-level thresholding with entropy (Fuzzy/Shannon/Kapur) and between-class-variance (Otsu) technique, (ii) Automated (Watershed/Markov-Random-Field) and semi-automated (Chan-Vese/Level-Set/Active-Contour) segmentation… More >

Displaying 1-10 on page 1 of 2. Per Page