Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    ARTICLE

    AT-Net: A Semi-Supervised Framework for Asparagus Pathogenic Spore Detection under Complex Backgrounds

    Jiajun Sun, Shunshun Ji, Chao Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068668 - 09 December 2025

    Abstract Asparagus stem blight is a devastating crop disease, and the early detection of its pathogenic spores is essential for effective disease control and prevention. However, spore detection is still hindered by complex backgrounds, small target sizes, and high annotation costs, which limit its practical application and widespread adoption. To address these issues, a semi-supervised spore detection framework is proposed for use under complex background conditions. Firstly, a difficulty perception scoring function is designed to quantify the detection difficulty of each image region. For regions with higher difficulty scores, a masking strategy is applied, while the… More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Raman and x-ray diffraction data analysis of Ge2Sb2Te5 films using gaussian approximation considering the temperature population factor

    S. N. Garibovaa,b,*, А. I. Isayeva, S. A. Rzayevaa, F. N. Mammadovc

    Chalcogenide Letters, Vol.22, No.1, pp. 1-9, 2025, DOI:10.15251/CL.2025.221.1

    Abstract The structure particulars of amorphous Ge2Sb2Te5 thermally evaporated on glass substrates, as well as films annealed at temperatures of 500 and 700 K have been studied by the considering of experimentally established facts obtained from X-ray analysis and Raman spectroscopy measurements. The Debye-Scherrer and Williams-Hall methods were applied to the X-ray diffraction data for estimate the size of crystallites, interatomic distances, dislocation density and structure distortion degree. The features of heat treatment effect on numerical values of the above quantities at a given temperatures have been established. The analysis of the spectral distribution of Raman… More >

  • Open Access

    ARTICLE

    Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization

    Sen Yang1, Jie Zhong1, Boyu Gan1, Yi Sun1, Changming Bu1, Mingtao Zhang1, Jiehong Li1,*, Yang Yu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2943-2967, 2025, DOI:10.32604/cmes.2025.067282 - 30 September 2025

    Abstract Foam concrete is widely used in engineering due to its lightweight and high porosity. Its compressive strength, a key performance indicator, is influenced by multiple factors, showing nonlinear variation. As compressive strength tests for foam concrete take a long time, a fast and accurate prediction method is needed. In recent years, machine learning has become a powerful tool for predicting the compressive strength of cement-based materials. However, existing studies often use a limited number of input parameters, and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.… More >

  • Open Access

    ARTICLE

    Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing

    Khalil Ibrahim Lairedj1, Zouaoui Chama1, Amina Bagdaoui1, Samia Larguech2, Younes Menni3,4,*, Nidhal Becheikh5, Lioua Kolsi6,*, Badr M. Alshammari7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2419-2443, 2025, DOI:10.32604/cmes.2025.069396 - 31 August 2025

    Abstract Brain tumor segmentation from Magnetic Resonance Imaging (MRI) supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans, making it a crucial yet challenging task. Supervised models such as 3D U-Net perform well in this domain, but their accuracy significantly improves with appropriate preprocessing. This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model (GGMM) to T1 contrast-enhanced MRI scans from the BraTS 2020 dataset. The Expectation-Maximization (EM) algorithm is employed to estimate parameters for four tissue classes, generating a More >

  • Open Access

    ARTICLE

    Multi-Kernel Bandwidth Based Maximum Correntropy Extended Kalman Filter for GPS Navigation

    Amita Biswal, Dah-Jing Jwo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 927-944, 2025, DOI:10.32604/cmes.2025.067299 - 31 July 2025

    Abstract The extended Kalman filter (EKF) is extensively applied in integrated navigation systems that combine the global navigation satellite system (GNSS) and strap-down inertial navigation system (SINS). However, the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties, making it difficult to achieve optimal GNSS/INS integration. Dealing with non-Gaussian noise remains a significant challenge in filter development today. Therefore, the maximum correntropy criterion (MCC) is utilized in EKFs to manage heavy-tailed measurement noise. However, its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored. In this paper,… More >

  • Open Access

    ARTICLE

    Mitigating Adversarial Attack through Randomization Techniques and Image Smoothing

    Hyeong-Gyeong Kim1, Sang-Min Choi2, Hyeon Seo2, Suwon Lee2,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4381-4397, 2025, DOI:10.32604/cmc.2025.067024 - 30 July 2025

    Abstract Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models. Existing defense mechanisms often suffer drawbacks, such as the need for model retraining, significant inference time overhead, and limited effectiveness against specific attack types. Achieving perfect defense against adversarial attacks remains elusive, emphasizing the importance of mitigation strategies. In this study, we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to mitigate the impact of adversarial attacks. First, the image was randomly cropped to vary its dimensions and then placed… More >

  • Open Access

    ARTICLE

    Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes

    Ziyang Wang1, Lian Duan1,2,*, Lei Kuang1, Haibo Zhou1, Ji’an Duan1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2587-2604, 2025, DOI:10.32604/cmc.2025.065648 - 03 July 2025

    Abstract The packaging quality of coaxial laser diodes (CLDs) plays a pivotal role in determining their optical performance and long-term reliability. As the core packaging process, high-precision laser welding requires precise control of process parameters to suppress optical power loss. However, the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise. To address this challenge, a physics-informed (PI) and data-driven collaboration approach for welding parameter optimization is proposed. First, thermal-fluid-solid coupling finite element method (FEM) was employed to quantify the sensitivity of welding parameters to physical characteristics, including… More >

  • Open Access

    ARTICLE

    A Stacked BWO-NIGP Framework for Robust and Accurate SOH Estimation of Lithium-Ion Batteries under Noisy and Small-Sample Scenarios

    Pu Yang1,*, Wanning Yan1, Rong Li1, Lei Chen2, Lijie Guo2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 699-725, 2025, DOI:10.32604/cmc.2025.064947 - 09 June 2025

    Abstract Lithium-ion batteries (LIBs) have been widely used in mobile energy storage systems because of their high energy density, long life, and strong environmental adaptability. Accurately estimating the state of health (SOH) for LIBs is promising and has been extensively studied for many years. However, the current prediction methods are susceptible to noise interference, and the estimation accuracy has room for improvement. Motivated by this, this paper proposes a novel battery SOH estimation method, the Beluga Whale Optimization (BWO) and Noise-Input Gaussian Process (NIGP) Stacked Model (BGNSM). This method integrates the BWO-optimized Gaussian Process Regression (GPR)… More >

  • Open Access

    ARTICLE

    Deepfake Detection Using Adversarial Neural Network

    Priyadharsini Selvaraj1,*, Senthil Kumar Jagatheesaperumal2, Karthiga Marimuthu1, Oviya Saravanan1, Bader Fahad Alkhamees3, Mohammad Mehedi Hassan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1575-1594, 2025, DOI:10.32604/cmes.2025.064138 - 30 May 2025

    Abstract With expeditious advancements in AI-driven facial manipulation techniques, particularly deepfake technology, there is growing concern over its potential misuse. Deepfakes pose a significant threat to society, particularly by infringing on individuals’ privacy. Amid significant endeavors to fabricate systems for identifying deepfake fabrications, existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations, thereby hindering their broad applicability to images and videos produced by unfamiliar technologies. In this manuscript, we endorse resilient training tactics to amplify generalization capabilities. In adversarial training, models are trained using More >

Displaying 1-10 on page 1 of 105. Per Page