Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (249)
  • Open Access

    ARTICLE

    Identification of Cavities in a Three-Dimensional Layer by Minimization of an Optimal Cost Functional Expansion

    A.E. Martínez-Castro1, I.H. Faris1, R. Gallego1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.3, pp. 177-206, 2012, DOI:10.3970/cmes.2012.087.177

    Abstract In this paper, the identification of hidden defects inside a three-dimen -sional layer is set as an Identification Inverse Problem. This problem is solved by minimizing a cost functional which is linearized with respect to the volume defects, leading to a procedure that requires only computations at the host domain free of defects. The cost functional is stated as the misfit between experimental and computed displacements and spherical and/or ellipsoidal cavities are the defects to locate. The identification of these cavities is based on the measured displacements at a set of points due to time-harmonic… More >

  • Open Access

    ARTICLE

    An Application of Genetic Algorithms and the Method of Fundamental Solutions to Simulate Cathodic Protection Systems

    W.J. Santos1 , J.A.F. Santiago1, J.C.F Telles1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.1, pp. 23-40, 2012, DOI:10.3970/cmes.2012.087.023

    Abstract The aim of this paper is to present numerical simulations of Cathodic Protection (CP) Systems using a Genetic Algorithm (GA) and the Method of Fundamental Solutions (MFS). MFS is used to obtain the solution of the associated homogeneous equation with the non-homogeneous equation subject to nonlinear boundary conditions defined as polarization curves. The adopted GA minimizes a nonlinear error function, whose design variables are the coefficients of the linear superposition of fundamental solutions and the positions of the source points, located outside the problem domain. In this work, the anodes added to the CP system More >

  • Open Access

    ARTICLE

    Upper and Lower Bounds of the Solution for the Superelliptical Plates Problem Using Genetic Algorithms

    H.W. Tang1, Y.T. Yang1, C.K. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.3, pp. 193-206, 2012, DOI:10.3970/cmes.2012.085.193

    Abstract In this article, a new method combining the Mathematical Programming and the Method of Weighted Residual called MP-MWR is presented. Under the validation of maximum principle, and up on the collocation method, the differential equation can be transferred into a bilateral inequality problem. Applying the genetic algorithms helps to find optimal solutions of upper and lower bounds which satisfy the inequalities. Here, the method is verified by analyzing the deflection of superelliptical clamped plate problem. By using this method, the good approximate solution and its error bounds can be obtained effectively and accurately. More >

  • Open Access

    ARTICLE

    The Anisotropy of Young's Modulus in Bones

    Ligia Munteanu1, Veturia Chiroiu1, Valeria Mosnegutu1

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 137-156, 2011, DOI:10.3970/cmc.2011.026.137

    Abstract In this paper, yet another method for evaluating the elastic modulus for human bones is introduced and investigated. This method adopts the Jankowski and Tsakalakos strain energy function in which, the Born-Mayer energy term is the predominant term for calculations the elastic constants. By taking accounts the directional aspects of the spatial structure of bones, we obtain different values for the Young's modulus depending on the direction of the applied force with respect to the material's structure. The inverse problem analyzed in this paper is solved by inversion of the experimental data. An efficient stopping More >

  • Open Access

    ARTICLE

    Multidisciplinary Design Optimization of Long Endurance Unmanned Aerial Vehicle Wing

    S. Rajagopal1, Ranjan Ganguli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.1, pp. 1-34, 2011, DOI:10.3970/cmes.2011.081.001

    Abstract The preliminary wing design of a low speed, long endurance UAV is formulated as a two step optimization problem. The first step performs a single objective aerodynamic optimization and the second step involves a coupled dual objective aerodynamic and structural optimization. During the first step, airfoil geometry is optimized to get maximum endurance parameter at a 2D level with maximum thickness to chord ratio and maximum camber as design variables. Leading edge curvature, trailing edge radius, zero lift drag coefficient and zero lift moment coefficient are taken as constraints. Once the airfoil geometry is finalized,… More >

  • Open Access

    ARTICLE

    Numerical Design of Random Micro-Heterogeneous Materials with Functionally-Graded Effective Thermal Conductivities Using Genetic Algorithms and the Fast Boundary Element Method

    Marco Dondero1, Adrián P. Cisilino1,2, J. Pablo Tomba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 225-246, 2011, DOI:10.3970/cmes.2011.078.225

    Abstract This paper introduces a numerical methodology for the design of random micro-heterogeneous materials with functionally graded effective thermal conductivities (ETC). The optimization is carried out using representative volume elements (RVEs), a parallel Genetic Algorithm (GA) as optimization method, and a Fast Multipole Boundary Element Method (FMBEM) for the evaluation of the cost function. The methodology is applied for the design of foam-like microstructures consisting of random distributions of circular insulated holes. The temperature field along a material sample is used as objective function, while the spatial distribution of the holes is the design variable. There More >

  • Open Access

    ARTICLE

    Classification and Optimization Model of Mesoporous Carbons Pore Structure and Adsorption Properties Based on Support Vector Machine

    Zhen Yang1, Xingsheng Gu2, Xiaoyi Liang1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 161-182, 2011, DOI:10.3970/cmes.2011.074.161

    Abstract Mesoporous carbons are synthesized by organic-organic self-assembly of triblock copolymer F127 and a new type of carbon precursor as resorcinol-furfural oligomers. Some factors will impact the mesoporous carbons pore structure and properties were studied. The main factors, such as the ratio of triblock copolymer F127 and oligomers, degree of polymerizstry of resorcinol-furfural oligomers, the ratio of resorcinol-furfural oligomers - F/R, and their mutual relations were identified. Aimed at balancing the complex characteristic of mesoporous structure and adsorption properties, a classification and optimization model based on support vector machine is developed. The optimal operation conditions of More >

  • Open Access

    ABSTRACT

    Numerical prediction and sequential process optimization in sheet forming based on genetic algorithm

    Schmidt1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.2, pp. 65-74, 2010, DOI:10.3970/icces.2010.015.065

    Abstract Genetic algorithm is an emerging technique used in engineering design activities to find an optimized solution which satisfy a number of design goals. Non-linear direct method of goal search use successive linearization techniques, which are sensitive to the chosen starting solution and quality of the objective function. The proposed technique can solve programming problems having non-convex regions, which are usually avoided in classical optimization problems. The efficacy of the proposed novel method is demonstrated by solving a number of test problems. The results suggest that the proposed method is effective and represents a practical tool More >

  • Open Access

    ARTICLE

    Optimum Design of a Thin Elastic Rod Using a Genetic Algorithm

    Veturia Chiroiu, Ligia Munteanu1, Adrian Toader2

    CMES-Computer Modeling in Engineering & Sciences, Vol.65, No.1, pp. 1-26, 2010, DOI:10.3970/cmes.2010.065.001

    Abstract The best methods of the genetic algorithms (GA) are obtained in order to optimize the shape of a thin elastic rod subjected to spatial bending and torsion. The optimal cross-section is determined from the minimum volume condition, against the three modal bucklings. More >

  • Open Access

    ARTICLE

    Studies on Methodological Developments in Structural Damage Identification

    V. Srinivas1, Saptarshi Sasmal1, K. Ramanjaneyulu2

    Structural Durability & Health Monitoring, Vol.5, No.2, pp. 133-160, 2009, DOI:10.3970/sdhm.2009.005.133

    Abstract Many advances have taken place in the area of structural damage detection and localization using several approaches. Availability of cost-effective computing memory and speed, improvement in sensor technology including remotely monitored sensors, advancements in the finite element method, adaptation of modal testing and development of non-linear system identification methods bring out immense technical advancements that have contributed to the advancement of modal-based damage detection methods. Advances in modal-based damage detection methods over the last 20-30 years have produced new techniques for examining vibration data for identification of structural damage. In this paper, studies carried out… More >

Displaying 221-230 on page 23 of 249. Per Page