Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access


    Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone: A Stochastic Geometry Approach

    Yulei Wang1, Li Feng1,*, Shumin Yao1,2, Hong Liang1, Haoxu Shi1, Yuqiang Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 639-661, 2024, DOI:10.32604/cmes.2023.029565

    Abstract Interference management is one of the most important issues in the device-to-device (D2D)-enabled heterogeneous cellular networks (HetCNets) due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum. To alleviate the interference, an efficient interference management way is to set exclusion zones around the cellular receivers. In this paper, we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets. The main difficulties contain three aspects: 1) how to model the location randomness of base stations, cellular and D2D users in practical networks; 2)… More >

  • Open Access


    Gas Transport Through Nanochannels: Surface Effect and Molecular Geometry Effect

    JianHao Qian1, HengAn Wu1, FengChao Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09144

    Abstract Gas transport through nanochannels is ubiquitous in nature and also plays an important role in industry. The gas flow in this regime can be described by the Knudsen theory, which assumes that molecules diffusely reflect on the confining walls [1]. However, with the emergence of low dimensional carbon-based materials such as graphene and carbon nanotubes, it has been evidenced that this assumption might not hold for some atomically smooth surfaces, resulting in an anomalous enhancement of gas flux [2]. Moreover, in Knudsen theory, gas molecules are usually treated as mass points and distinguished solely by molecular weight, which cannot interpret… More >

  • Open Access



    R. Rajaramana , L. Anna Gowsalyab,*, R. Velrajc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.23

    Abstract To get accurate results in casting simulations, prediction of interfacial heat transfer coefficient (IHTC) is imperative. In this paper an attempt has been made for estimating IHTC during solidification process of a rectangular aluminium alloy casting in a sand mould. The cast temperature and mould temperature are measured during the experimental process at different time intervals during the process of solidification. Two different inverse methods, namely control volume and Beck’s approach are used to estimate the heat flux and temperature at the mould surface by using the experimentally measured temperatures. In the case of control volume technique, the partial derivative… More >

  • Open Access


    New Quantum Color Codes Based on Hyperbolic Geometry

    Avaz Naghipour1,*, Duc Manh Nguyen2

    Journal of Quantum Computing, Vol.4, No.2, pp. 113-120, 2022, DOI:10.32604/jqc.2022.033712

    Abstract In this paper, hyperbolic geometry is used to constructing new quantum color codes. We use hyperbolic tessellations and hyperbolic polygons to obtain them by pairing the edges on compact surfaces. These codes have minimum distance of at least and the encoding rate near to which are not mentioned in other literature. Finally, a comparison table with quantum codes recently proposed by the authors is provided. More >

  • Open Access


    Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle

    Jianfeng Pan*, Jinpeng Hua, Jiaqi Yao, Abiodun Oluwaleke Ojo

    Energy Engineering, Vol.120, No.7, pp. 1541-1562, 2023, DOI:10.32604/ee.2023.027873

    Abstract The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions. However, there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle. Therefore, in this study, an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics (CFD) simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle. Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system… More >

  • Open Access


    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying the lesions are high. Similarly,… More >

  • Open Access



    Fithry Mohd Amir*, Mohd Zamri Yusoff, Saiful Hasmady Abu Hassan

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.27

    Abstract Nanofluid film on a horizontal tube is investigated numerically on the circular and multi-faceted cylinder. The fluid flow characteristics, including film thickness, shear stress, and thermal performance, are observed and analyzed. Fluid film on the circular surface is typical in many engineering applications, but the study of nanofluid film on non-circular surface is deficient in literature. The study provides a numerical model of a multi-faceted cylinder to simulate the nanofluid film on the non-circular surfaces using a volume of fluid (VOF) method. The ratio of Brownian motion to thermophoretic diffusion, NBT developed along the film thickness in phases, in which… More >

  • Open Access


    Solving Geometry Problems via Feature Learning and Contrastive Learning of Multimodal Data

    Pengpeng Jian1, Fucheng Guo1,*, Yanli Wang2, Yang Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1707-1728, 2023, DOI:10.32604/cmes.2023.023243

    Abstract This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data. A key challenge in solving geometry problems using deep learning is to automatically adapt to the task of understanding single-modal and multimodal problems. Existing methods either focus on single-modal or multimodal problems, and they cannot fit each other. A general geometry problem solver should obviously be able to process various modal problems at the same time. In this paper, a shared feature-learning model of multimodal data is adopted to learn the unified feature representation of text and image, which… More >

  • Open Access


    A 3D Geometry Model of Vocal Tract Based on Smart Internet of Things

    Ming Li1, Kuntharrgyal Khysru2, Haiqiang Shi2,*, Qiang Fang3,*, Jinrong Hu4, Yun Chen5

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 783-798, 2023, DOI:10.32604/csse.2023.034687

    Abstract The Internet of Things (IoT) plays an essential role in the current and future generations of information, network, and communication development and applications. This research focuses on vocal tract visualization and modeling, which are critical issues in realizing inner vocal tract animation. That is applied in many fields, such as speech training, speech therapy, speech analysis and other speech production-related applications. This work constructed a geometric model by observation of Magnetic Resonance Imaging data, providing a new method to annotate and construct 3D vocal tract organs. The proposed method has two advantages compared with previous methods. Firstly it has a… More >

  • Open Access


    Analysis on D2D Heterogeneous Networks with State-Dependent Priority Traffic

    Guangjun Liang1,2, Jianfang Xin3,*, Linging Xia1, Xueli Ni1,4, Yi Cao5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2981-2998, 2023, DOI:10.32604/cmc.2023.028597

    Abstract In this work, we consider the performance analysis of state dependent priority traffic and scheduling in device to device (D2D) heterogeneous networks. There are two priority transmission types of data in wireless communication, such as video or telephone, which always meet the requirements of high priority (HP) data transmission first. If there is a large amount of low priority (LP) data, there will be a large amount of LP data that cannot be sent. This situation will cause excessive delay of LP data and packet dropping probability. In order to solve this problem, the data transmission process of high priority… More >

Displaying 1-10 on page 1 of 56. Per Page