Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    A Direct Forcing Immersed Boundary Method Based Lattice Boltzmann Method to Simulate Flows with Complex Geometry

    Cheng-Hsiu Yang1, Cheng Chang1, Chao-An Lin1,2

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 209-228, 2009, DOI:10.3970/cmc.2009.011.209

    Abstract In the present study, a lattice Boltzmann method based new immersed boundary technique is proposed for simulating two-dimensional viscous incompressible flows interacting with stationary and moving solid boundaries. The lattice Boltzmann method with known force field is used to simulate the flow where the complex geometry is immersed inside the computational domain. This is achieved via direct-momentum forcing on a Cartesian grid by combining "solid-body forcing" at solid nodes and interpolation on neighboring fluid nodes. The proposed method is examined by simulating decaying vortex, 2D flow over an asymmetrically placed cylinder, and in-line oscillating cylinder in a fluid at rest.… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

  • Open Access

    ARTICLE

    An Optimization Analysis of UBM Thicknesses and Solder Geometry on A Wafer Level Chip Scale Package Using Robust Methods

    Heng-Cheng Lin1, Chieh Kung2, Rong-Sheng Chen1, Gin-Tiao Liang1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 55-64, 2006, DOI:10.3970/cmc.2006.003.055

    Abstract Wafer level chip scale package (WLCSP) has been recognized providing clear advantages over traditional wire-bond package in relaxing the need of underfill while offering high density of I/O interconnects. Without the underfill, the solder joint reliability becomes more critical. Adding to the reliability concerns is the safety demand trend toward "green'' products on which unleaded material, e.g. lead-free solders, is required. The requirement of lead-free solders on the packages results in a higher reflow temperature profile in the package manufacturing process, in turn, complicating the reliability issue. This paper presents an optimization study, considering the fatigue reliability, for a wafer… More >

Displaying 61-70 on page 7 of 63. Per Page