Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture

    Usman Ahmad1, Muhammad Junaid Ali2, Faizan Ahmed Khan3, Arfat Ahmad Khan4, Arif Ur Rehman1, Malik Muhammad Ali Shahid5, Mohd Anul Haq6,*, Ilyas Khan7, Zamil S. Alzamil6, Ahmed Alhussen8

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2125-2140, 2023, DOI:10.32604/csse.2023.031008

    Abstract Building an automatic fish recognition and detection system for large-scale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species. However, it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes. To solve these issues, we propose a transfer learning-based technique in which we use Efficient-Net, which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database, which is a large scale dataset. Furthermore, prior to the activation layer, we use Global Average Pooling (GAP) instead of dense layer with… More >

  • Open Access

    ARTICLE

    An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization

    Jun Liu1, Geng Yuan2, Changdi Yang2, Houbing Song3, Liang Luo4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1571-1587, 2023, DOI:10.32604/cmes.2022.023195

    Abstract The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research. The safety criteria for medical imaging are highly stringent, and models are required for an explanation. However, existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs. Thus, the interpretability of CNNs has come into the spotlight. Since medical imaging data are limited, many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public ImageNet datasets by the transfer learning method. Unfortunately, this generates many unreliable parameters and makes… More >

Displaying 1-10 on page 1 of 2. Per Page