Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    HybridLSTM: An Innovative Method for Road Scene Categorization Employing Hybrid Features

    Sanjay P. Pande1, Sarika Khandelwal2, Ganesh K. Yenurkar3,*, Rakhi D. Wajgi3, Vincent O. Nyangaresi4,5,*, Pratik R. Hajare6, Poonam T. Agarkar7

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5937-5975, 2025, DOI:10.32604/cmc.2025.064505 - 30 July 2025

    Abstract Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems, particularly in dynamic and unstructured environments. While recent advancements in deep learning have significantly enhanced road scene classification, simultaneously achieving high accuracy, computational efficiency, and adaptability across diverse conditions continues to be difficult. To address these challenges, this study proposes HybridLSTM, a novel and efficient framework that integrates deep learning-based, object-based, and handcrafted feature extraction methods within a unified architecture. HybridLSTM is designed to classify four distinct road scene categories—crosswalk (CW), highway (HW), overpass/tunnel (OP/T), and parking (P)—by… More >

  • Open Access

    ARTICLE

    AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network

    Ya-Jie Sun1, Li-Wei Qiao1, Sai Ji1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1769-1785, 2025, DOI:10.32604/cmc.2025.062950 - 09 June 2025

    Abstract Vehicle re-identification involves matching images of vehicles across varying camera views. The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images, which increases the complexity of re-identification tasks. To tackle these challenges, this study proposes AG-GCN (Attention-Guided Graph Convolutional Network), a novel framework integrating several pivotal components. Initially, AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically, thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones. Moreover, AG-GCN adopts More >

  • Open Access

    ARTICLE

    CloudViT: A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features

    Daoming Wei1, Fangyan Ge2, Bopeng Zhang1, Zhiqiang Zhao3, Dequan Li3,*, Lizong Xi4, Jinrong Hu5,*, Xin Wang6

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5729-5746, 2025, DOI:10.32604/cmc.2025.061402 - 19 May 2025

    Abstract Accurate cloud classification plays a crucial role in aviation safety, climate monitoring, and localized weather forecasting. Current research has been focusing on machine learning techniques, particularly deep learning based model, for the types identification. However, traditional approaches such as convolutional neural networks (CNNs) encounter difficulties in capturing global contextual information. In addition, they are computationally expensive, which restricts their usability in resource-limited environments. To tackle these issues, we present the Cloud Vision Transformer (CloudViT), a lightweight model that integrates CNNs with Transformers. The integration enables an effective balance between local and global feature extraction. To… More >

  • Open Access

    ARTICLE

    AMSFuse: Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification

    Chengzhang Zhu1,2, Ahmed Alasri1, Tao Xu3, Yalong Xiao1,2,*, Abdulrahman Noman1, Raeed Alsabri1, Xuanchu Duan4, Monir Abdullah5

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5153-5167, 2025, DOI:10.32604/cmc.2024.058647 - 06 March 2025

    Abstract Globally, diabetic retinopathy (DR) is the primary cause of blindness, affecting millions of people worldwide. This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment. Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment. However, traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level. On the other hand, models that focus on global semantic-level information might overlook critical, subtle local pathological features. To address this issue, we propose an… More >

  • Open Access

    ARTICLE

    A Two-Phase Paradigm for Joint Entity-Relation Extraction

    Bin Ji1, Hao Xu1, Jie Yu1, Shasha Li1, Jun Ma1, Yuke Ji2,*, Huijun Liu1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1303-1318, 2023, DOI:10.32604/cmc.2023.032168 - 22 September 2022

    Abstract An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task. However, these models sample a large number of negative entities and negative relations during the model training, which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance. In order to address the above issues, we propose a two-phase paradigm for the span-based joint entity and relation extraction, which involves classifying the entities and relations in the first phase, and predicting the types of these entities and relations in the second… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern (LTP) Features and Non-subsampled Shearlet Transform (NSST) Domain Statistical Features

    Hilly Gohain Baruah*, Vijay Kumar Nath, Deepika Hazarika

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 137-164, 2022, DOI:10.32604/cmes.2022.018339 - 24 January 2022

    Abstract With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR) has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization (EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation… More >

  • Open Access

    ARTICLE

    A Novel Feature Aggregation Approach for Image Retrieval Using Local and Global Features

    Yuhua Li1, Zhiqiang He1,2, Junxia Ma1,*, Zhifeng Zhang1,*, Wangwei Zhang1, Prasenjit Chatterjee3, Dragan Pamucar4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 239-262, 2022, DOI:10.32604/cmes.2022.016287 - 24 January 2022

    Abstract The current deep convolution features based on retrieval methods cannot fully use the characteristics of the salient image regions. Also, they cannot effectively suppress the background noises, so it is a challenging task to retrieve objects in cluttered scenarios. To solve the problem, we propose a new image retrieval method that employs a novel feature aggregation approach with an attention mechanism and utilizes a combination of local and global features. The method first extracts global and local features of the input image and then selects keypoints from local features by using the attention mechanism. After… More >

  • Open Access

    ARTICLE

    Person Re-Identification Based on Joint Loss and Multiple Attention Mechanism

    Yong Li, Xipeng Wang*

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 563-573, 2021, DOI:10.32604/iasc.2021.017926 - 11 August 2021

    Abstract Person re-identification (ReID) is the use of computer vision and machine learning techniques to determine whether the pedestrians in the two images under different cameras are the same person. It can also be regarded as a matching retrieval task for person targets in different scenes. The research focuses on how to obtain effective person features from images with occlusion, angle change, and target attitude change. Based on the present difficulties and challenges in ReID, the paper proposes a ReID method based on joint loss and multi-attention network. It improves the person re-identification algorithm based on More >

Displaying 1-10 on page 1 of 8. Per Page