Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (214)
  • Open Access

    ARTICLE

    Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios

    Lyuchao Liao1,2, Hankun Xiao2,*, Pengqi Xing2, Zhenhua Gan1,2, Youpeng He2, Jiajun Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 557-576, 2024, DOI:10.32604/cmes.2024.047452

    Abstract Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imperfect data in perceiving environmental information, rendering them a vital issue in the practical application of autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in the Roundabouts. Specifically, the model incorporates an enhanced variational… More >

  • Open Access

    ARTICLE

    Application of Machine Learning For Prediction Dental Material Wear

    ABHIJEET SURYAWANSHI1, NIRANJANA BEHERA2,*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 305-316, 2023, DOI:10.32381/JPM.2023.40.3-4.11

    Abstract Resin composites are commonly applied as the material for dental restoration. Wear of these materials is a major issue. In this study specimens made of dental composite materials were subjected to an in-vitro test in a pin-on-disc tribometer. Four different dental composite materials applied in the experiment were soaked in a solution of chewing tobacco for certain days before being removed and put through a wear test. Subsequently, four different machine learning (ML) algorithms (AdaBoost, CatBoost, Gradient Boosting, Random Forest) were implemented for developing models for the prediction of wear of dental materials. AdaBoost, CatBoost, Gradient Boosting and Random Forest… More >

  • Open Access

    ARTICLE

    Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds

    Karim Choubani1,2,*, Ons Ghriss3, Nashmi H. Alrasheedi1, Sirin Dhaoui2, Abdallah Bouabidi2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 341-358, 2024, DOI:10.32604/fhmt.2024.047016

    Abstract Faced with the world’s environmental and energy-related challenges, researchers are turning to innovative, sustainable and intelligent solutions to produce, store, and distribute energy. This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond. Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials. This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with (SGSP) and without (SGSPP) paraffin wax (PW) as a phase-change material (PCM). Temperature and salinity were measured experimentally using a smart… More >

  • Open Access

    ARTICLE

    Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection

    Chengsheng Yuan1,2, Baojie Cui1,2, Zhili Zhou3, Xinting Li4,*, Qingming Jonathan Wu5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 899-914, 2024, DOI:10.32604/cmc.2023.045854

    Abstract In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the blank area of… More >

  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the material-field series-expansion (MFSE) method. The… More >

  • Open Access

    ARTICLE

    A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection

    Jiangshuai Wang1,*, Chuchu Cai1, Pan Fu2,3, Jun Li4,5, Hongwei Yang4, Song Deng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 537-546, 2024, DOI:10.32604/fdmp.2023.030430

    Abstract Multi-gradient drilling is a new offshore drilling method. The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure. In this study, a new heat transfer model is proposed by which the variable mass flow is properly taken into account. Using this model, the effects of the main factors influencing the wellbore temperature are analyzed. The results indicate that at the position where the separation injection device is installed, the temperature increase of the fluid in the drill pipe is mitigated due… More >

  • Open Access

    PROCEEDINGS

    Damping Properties in Gradient Nano-Grained Metals

    Sheng Qian1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010116

    Abstract Applications such as aircrafts and electronic devices require the noise and vibration reduction without much extra burden, such as extra damping systems. High damping metallic materials that exhibit the ability to dissipate mechanical energy are potential candidates in these application via directly being part of the functional components, such as the frame materials. The energy damping in polycrystalline metals depends on the activities of defects such as dislocation and grain boundary. However, operating defects has the opposite effect on strength and damping capacity. In the quest for high damping metals, maintaining the level of strength is desirable in practice. In… More >

  • Open Access

    REVIEW

    Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning: A Review

    Jiansheng Peng1,2,*, Jinsong Guo1, Fengbo Bao1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2971-2994, 2023, DOI:10.32604/cmc.2023.041897

    Abstract The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data in their daily production, which creates extremely favorable conditions for robots to perform machine learning. However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning provides a feasible solution to this problem, and the combination of federated learning and multi-robot systems… More >

  • Open Access

    ARTICLE

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

    Lianghao Hua1,2, Jianfeng Zhang1,*, Dejie Li3, Xiaobo Xi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2129-2157, 2024, DOI:10.32604/cmes.2023.030535

    Abstract With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural network (RBFNN) with a second-order ADRC and leverages a… More > Graphic Abstract

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

  • Open Access

    ARTICLE

    Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment

    Mohamed Zarouan1, Ibrahim M. Mehedi1,2,*, Shaikh Abdul Latif3, Md. Masud Rana4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1341-1364, 2024, DOI:10.32604/cmes.2023.030037

    Abstract Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamless operation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0. Specifically, various modernized industrial processes have been equipped with quite a few sensors to collect process-based data to find faults arising or prevailing in processes along with monitoring the status of processes. Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Due to the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experience and human knowledge, intellectual… More >

Displaying 1-10 on page 1 of 214. Per Page