Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data

    Huichao Cao1,*, Honghe Du1, Dongnian Jiang1, Wei Li1, Lei Du1, Jianfeng Yang2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1305-1325, 2025, DOI:10.32604/sdhm.2025.066002 - 05 September 2025

    Abstract In the production processes of modern industry, accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring “safe, stable, long-term, full load and optimal” operation of the production process. The benzene-to-ethylene ratio control system is a complex system based on an MPC-PID double-layer architecture. Taking into consideration the interaction between levels, coupling between loops and conditions of incomplete operation data, this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology. Firstly, according to the results of the pre-assessment of the system layers… More >

  • Open Access

    ARTICLE

    Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty

    Qingrong Zeng, Xiaochen Liu, Xuefeng Zhu*, Xiangkui Zhang, Ping Hu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2065-2085, 2024, DOI:10.32604/cmes.2024.052620 - 31 October 2024

    Abstract Traditional topology optimization methods often suffer from the “dimension curse” problem, wherein the computation time increases exponentially with the degrees of freedom in the background grid. Overcoming this challenge, we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty (CGAN-GP). This innovative method allows for nearly instantaneous prediction of optimized structures. Given a specific boundary condition, the network can produce a unique optimized structure in a one-to-one manner. The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization (SIMP) method. Subsequently, we More >

  • Open Access

    ARTICLE

    Image Generation of Tomato Leaf Disease Identification Based on Small-ACGAN

    Huaxin Zhou1,2, Ziying Fang3, Yilin Wang4, Mengjun Tong1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 175-194, 2023, DOI:10.32604/cmc.2023.037342 - 08 June 2023

    Abstract Plant diseases have become a challenging threat in the agricultural field. Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early. However, deep learning entails extensive data for training, and it may be challenging to collect plant datasets. Even though plant datasets can be collected, they may be uneven in quantity. As a result, the problem of classification model overfitting arises. This study targets this issue and proposes an auxiliary classifier GAN (small-ACGAN) model based on a small number of datasets to extend the available data.… More >

Displaying 1-10 on page 1 of 3. Per Page