Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    A Numerical Method of Granular Flow for Hazard Prediction Based on Depth-Integrated Model and High-Resolution Algorithm

    Wangxin Yu1,*, XiaoLiang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09825

    Abstract Landslide, debris flow and other large-scale natural disasters have a great threat to human life and property safety. The accuracy of prediction and calculation of large-scale disasters still needs great improvement, so as the study of prevention and interaction. In this paper, the depth-integrated shallow water flow model is adopted, and the numerical method of Kurganov developed in recent years is used to develop a highresolution algorithm which can capture shock waves and satisfy the hydrodynamic conditions. In order to make it adapt to the granular flow, appropriate adjustment is made distinct from the original… More >

  • Open Access


    Study on Strength Reduction Law and Meso-Crack Evolution of Lower Layered Cemented Tailings Backfill

    Huazhe Jiao1,2,3, Wenxiang Zhang1,2,3,*, Yunfei Wang1,2,3,*, Xinming Chen1,2,3, Liuhua Yang1,2,3, Yangyang Rong1,2,3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1513-1529, 2023, DOI:10.32604/jrm.2023.026008

    Abstract The green disposal of tailings solid waste is a problem to be solved in mine production. Cemented tailings filling stoping method can realize the dual goals of solid waste resource utilization and mined-out area reduction. However, the volume of the mined-out area of the open-pit method is larger than the filling capacity, resulting in the complex stratification of the underground backfill, and the strength of the backfill cannot meet the requirements. In this paper, according to the delamination situation, the specimens of horizontal and inclination angle layered cemented tailings backfill (LCTB) is made for a… More >

  • Open Access


    Numerical Simulation of a Granular Flow on a Smooth Inclined Plane

    Rida Tazi1, Adil Echchelh1, Mohammed El Ganaoui2, Aouatif Saad3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1631-1638, 2022, DOI:10.32604/fdmp.2022.021975

    Abstract Unlike most fluids, granular materials include coexisting solid, liquid or gaseous regions, which produce a rich variety of complex flows. Dense flows of grains driven by gravity down inclines occur in nature and in industrialprocesses. To describe the granular flow on an inclined surface, several studies were carried out. We can cite in particular the description of Saint-Venant which considers a dry granular flow, without cohesion and it only takes into account the substance-substrate friction, this model proposes a simplified form of the granular flow, which depends on the one side on the angle of… More >

  • Open Access


    Flow Characteristics of Non-Spherical Particles Simulated with Super-Quadric DEM

    Shunying Ji*, Siqiang Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 94-94, 2019, DOI:10.32604/icces.2019.04805

    Abstract Granular flow is commonly encountered in industry or nature, and is significantly affected by particle shapes. Super-quadric particles which can construct the geometric shape of irregular particles are simulated by the Discrete Element Method (DEM). In this study, the influence of aspect ratio and blockiness of particles on the flow characteristics is investigated, and the different discharge angles are used for different shaped particles to show the superposed effect of hopper configuration. Meanwhile, the Lacey mixing index is used to explore the effects of particle shapes on the mixing and motion of the granular system… More >

Displaying 1-10 on page 1 of 4. Per Page