Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access


    Deep Learning Social Network Access Control Model Based on User Preferences

    Fangfang Shan1,2,*, Fuyang Li1, Zhenyu Wang1, Peiyu Ji1, Mengyi Wang1, Huifang Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1029-1044, 2024, DOI:10.32604/cmes.2024.047665

    Abstract A deep learning access control model based on user preferences is proposed to address the issue of personal privacy leakage in social networks. Firstly, social users and social data entities are extracted from the social network and used to construct homogeneous and heterogeneous graphs. Secondly, a graph neural network model is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network. Then, high-order neighbor nodes, hidden neighbor nodes, displayed neighbor nodes, and social data nodes are used to update user nodes… More >

  • Open Access


    Social Robot Detection Method with Improved Graph Neural Networks

    Zhenhua Yu, Liangxue Bai, Ou Ye*, Xuya Cong

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1773-1795, 2024, DOI:10.32604/cmc.2023.047130

    Abstract Social robot accounts controlled by artificial intelligence or humans are active in social networks, bringing negative impacts to network security and social life. Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships, which makes it difficult to accurately describe the difference between the topological relations of nodes, resulting in low detection accuracy of social robots. This paper proposes a social robot detection method with the use of an improved neural network. First, social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social… More >

  • Open Access


    Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems

    Sang-min Lee, Namgi Kim*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1897-1914, 2024, DOI:10.32604/cmc.2023.046346

    Abstract Recommendation Information Systems (RIS) are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet. Graph Convolution Network (GCN) algorithms have been employed to implement the RIS efficiently. However, the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process. To address this issue, we propose a Weighted Forwarding method using the GCN (WF-GCN) algorithm. The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning. By applying the WF-GCN… More >

  • Open Access


    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

  • Open Access


    Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism

    Lanze Zhang, Yijun Gu*, Jingjie Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1701-1731, 2024, DOI:10.32604/cmes.2023.045129

    Abstract Graph Neural Networks (GNNs) play a significant role in tasks related to homophilic graphs. Traditional GNNs, based on the assumption of homophily, employ low-pass filters for neighboring nodes to achieve information aggregation and embedding. However, in heterophilic graphs, nodes from different categories often establish connections, while nodes of the same category are located further apart in the graph topology. This characteristic poses challenges to traditional GNNs, leading to issues of “distant node modeling deficiency” and “failure of the homophily assumption”. In response, this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks (SFA-HGNN), which integrates adaptive embedding mechanisms for… More >

  • Open Access


    An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework

    Yuchen Zhou1, Hongtao Huo1, Zhiwen Hou1, Lingbin Bu1, Yifan Wang1, Jingyi Mao1, Xiaojun Lv2, Fanliang Bu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 537-563, 2024, DOI:10.32604/cmes.2023.044895

    Abstract Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations, we propose… More >

  • Open Access


    A Graph Neural Network Recommendation Based on Long- and Short-Term Preference

    Bohuai Xiao1,2, Xiaolan Xie1,2,*, Chengyong Yang3

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3067-3082, 2023, DOI:10.32604/csse.2023.034712

    Abstract The recommendation system (RS) on the strength of Graph Neural Networks (GNN) perceives a user-item interaction graph after collecting all items the user has interacted with. Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession. However, user preferences are dynamic. With the passage of time and some trend guidance, users may generate some short-term preferences, which are more likely to lead to user-item interactions. A GNN recommendation based on long- and short-term preference (LSGNN) is proposed to address the above problems. LSGNN consists of four modules, using a GNN… More >

  • Open Access


    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and malicious behavior structure graph for… More >

  • Open Access


    Modeling Price-Aware Session-Based Recommendation Based on Graph Neural Network

    Jian Feng*, Yuwen Wang, Shaojian Chen

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 397-413, 2023, DOI:10.32604/cmc.2023.038741

    Abstract Session-based Recommendation (SBR) aims to accurately recommend a list of items to users based on anonymous historical session sequences. Existing methods for SBR suffer from several limitations: SBR based on Graph Neural Network often has information loss when constructing session graphs; Inadequate consideration is given to influencing factors, such as item price, and users’ dynamic interest evolution is not taken into account. A new session recommendation model called Price-aware Session-based Recommendation (PASBR) is proposed to address these limitations. PASBR constructs session graphs by information lossless approaches to fully encode the original session information, then introduces item price as a new… More >

  • Open Access


    HSPM: A Better Model to Effectively Preventing Open-Source Projects from Dying

    Zhifang Liao1, Fangying Fu1, Yiqi Zhao1, Sui Tan2,3,*, Zhiwu Yu2,3, Yan Zhang4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 431-452, 2023, DOI:10.32604/csse.2023.038087

    Abstract With the rapid development of Open-Source (OS), more and more software projects are maintained and developed in the form of OS. These Open-Source projects depend on and influence each other, gradually forming a huge OS project network, namely an Open-Source Software ECOsystem (OSSECO). Unfortunately, not all OS projects in the open-source ecosystem can be healthy and stable in the long term, and more projects will go from active to inactive and gradually die. In a tightly connected ecosystem, the death of one project can potentially cause the collapse of the entire ecosystem network. How can we effectively prevent such situations… More >

Displaying 1-10 on page 1 of 22. Per Page