Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    DIGNN-A: Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph

    Jizhao Liu, Minghao Guo*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 817-842, 2025, DOI:10.32604/cmc.2024.057660 - 03 January 2025

    Abstract The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats. Intrusion detection systems are crucial to network security, playing a pivotal role in safeguarding networks from potential threats. However, in the context of an evolving landscape of sophisticated and elusive attacks, existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts. To address these issues, this paper proposes a real-time network intrusion detection method based on… More >

  • Open Access

    ARTICLE

    Unmasking Social Robots’ Camouflage: A GNN-Random Forest Framework for Enhanced Detection

    Weijian Fan1,*, Chunhua Wang2, Xiao Han3, Chichen Lin4

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 467-483, 2025, DOI:10.32604/cmc.2024.056930 - 03 January 2025

    Abstract The proliferation of robot accounts on social media platforms has posed a significant negative impact, necessitating robust measures to counter network anomalies and safeguard content integrity. Social robot detection has emerged as a pivotal yet intricate task, aimed at mitigating the dissemination of misleading information. While graph-based approaches have attained remarkable performance in this realm, they grapple with a fundamental limitation: the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles. To unravel this challenge and thwart the camouflage tactics, this work proposed an innovative social… More >

  • Open Access

    ARTICLE

    Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network

    Pongsakon Promsawat1, Weerapan Sae-dan2,*, Marisa Kaewsuwan3, Weerawat Sudsutad3, Aphirak Aphithana3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 579-607, 2025, DOI:10.32604/cmes.2024.057774 - 17 December 2024

    Abstract The ability to accurately predict urban traffic flows is crucial for optimising city operations. Consequently, various methods for forecasting urban traffic have been developed, focusing on analysing historical data to understand complex mobility patterns. Deep learning techniques, such as graph neural networks (GNNs), are popular for their ability to capture spatio-temporal dependencies. However, these models often become overly complex due to the large number of hyper-parameters involved. In this study, we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks (DMST-GNODE), a framework based on ordinary differential equations (ODEs) that autonomously discovers effective spatial-temporal… More >

  • Open Access

    ARTICLE

    Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks

    Ayesha Khaliq1, Salman Afsar Awan1, Fahad Ahmad2,*, Muhammad Azam Zia1, Muhammad Zafar Iqbal3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3221-3242, 2024, DOI:10.32604/cmc.2024.053488 - 15 August 2024

    Abstract The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity. Current approaches in Extractive Text Summarization (ETS) leverage the modeling of inter-sentence relationships, a task of paramount importance in producing coherent summaries. This study introduces an innovative model that integrates Graph Attention Networks (GATs) with Transformer-based Bidirectional Encoder Representations from Transformers (BERT) and Latent Dirichlet Allocation (LDA), further enhanced by Term Frequency-Inverse Document Frequency (TF-IDF) values, to improve sentence selection by capturing comprehensive topical information. Our… More >

  • Open Access

    ARTICLE

    Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence

    Youshen Jiang1, Tongqing Zhou1, Zhilin Wang2, Zhiping Cai1,*, Qiang Ni3

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 585-597, 2024, DOI:10.32604/iasc.2023.030221 - 11 July 2024

    Abstract Due to the increasingly severe challenges brought by various epidemic diseases, people urgently need intelligent outbreak trend prediction. Predicting disease onset is very important to assist decision-making. Most of the existing work fails to make full use of the temporal and spatial characteristics of epidemics, and also relies on multivariate data for prediction. In this paper, we propose a Multi-Scale Location Attention Graph Neural Networks (MSLAGNN) based on a large number of Centers for Disease Control and Prevention (CDC) patient electronic medical records research sequence source data sets. In order to understand the geography and… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281 - 15 May 2024

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410 - 15 May 2024

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    Deep Learning Social Network Access Control Model Based on User Preferences

    Fangfang Shan1,2,*, Fuyang Li1, Zhenyu Wang1, Peiyu Ji1, Mengyi Wang1, Huifang Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1029-1044, 2024, DOI:10.32604/cmes.2024.047665 - 16 April 2024

    Abstract A deep learning access control model based on user preferences is proposed to address the issue of personal privacy leakage in social networks. Firstly, social users and social data entities are extracted from the social network and used to construct homogeneous and heterogeneous graphs. Secondly, a graph neural network model is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network. Then, high-order neighbor nodes, hidden neighbor nodes, displayed neighbor nodes, and social data nodes are… More >

  • Open Access

    ARTICLE

    Social Robot Detection Method with Improved Graph Neural Networks

    Zhenhua Yu, Liangxue Bai, Ou Ye*, Xuya Cong

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1773-1795, 2024, DOI:10.32604/cmc.2023.047130 - 27 February 2024

    Abstract Social robot accounts controlled by artificial intelligence or humans are active in social networks, bringing negative impacts to network security and social life. Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships, which makes it difficult to accurately describe the difference between the topological relations of nodes, resulting in low detection accuracy of social robots. This paper proposes a social robot detection method with the use of an improved neural network. First, social relationship subgraphs are constructed by leveraging the user’s social… More >

  • Open Access

    ARTICLE

    An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework

    Yuchen Zhou1, Hongtao Huo1, Zhiwen Hou1, Lingbin Bu1, Yifan Wang1, Jingyi Mao1, Xiaojun Lv2, Fanliang Bu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 537-563, 2024, DOI:10.32604/cmes.2023.044895 - 30 December 2023

    Abstract Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information… More >

Displaying 1-10 on page 1 of 14. Per Page