Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Characterization of three-dimensional multipotent adipose-derived stem cell spheroids

    HONGYANG LI1,2, CHAN WANG4, SHIWEI LIU1, YONGLONG GUO1,3,4,*, JIANSU CHEN1,3,4,*

    BIOCELL, Vol.46, No.7, pp. 1705-1716, 2022, DOI:10.32604/biocell.2022.018442

    Abstract Human adipose stem cells (hADSCs) are reliable sources for cell therapy. However, the clinical applications are limited by the decrease in activity during in vitro culture. We used a knockout serum replacement (KSR) medium, Eppendorf (EP) tube culture, and a simulated microgravity (SMG) culture system to establish hADSC spheroids. We found that hADSCs aggregated and formed spheroids in the KSR culture medium. The EP tube culture method revealed many biological cell characteristics, such as good cell viabilities, rough surfaces, polar growth, fusion phenomenon, and injectability. The findings show its advantages for hADSCs spherical cultures. When cultured in SMG, hADSC spheroids… More >

  • Open Access

    ARTICLE

    Comparative Study on Deformation Prediction Models of Wuqiangxi Concrete Gravity Dam Based on Monitoring Data

    Songlin Yang1,2, Xingjin Han1,2, Chufeng Kuang1,2, Weihua Fang3, Jianfei Zhang4, Tiantang Yu4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 49-72, 2022, DOI:10.32604/cmes.2022.018325

    Abstract The deformation prediction models of Wuqiangxi concrete gravity dam are developed, including two statistical models and a deep learning model. In the statistical models, the reliable monitoring data are firstly determined with Lahitte criterion; then, the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data, and the factors of water pressure, temperature and time effect are considered in the models; finally, according to the monitoring data from 2006 to 2020 of five typical measuring points including J23 (on dam section ), J33 (on dam section… More >

  • Open Access

    VIEWPOINT

    Mechanotransduction-The relationship between gravity, cells and tensile loading in extracellular matrix

    FREDERICK H. SILVER

    BIOCELL, Vol.46, No.2, pp. 297-299, 2022, DOI:10.32604/biocell.2022.017406

    Abstract Gravity plays a central role in vertebrate development and evolution. Mechanotransduction involves the tensile tethering of veins and arteries, connections between the epidermis and dermis in skin, tensile stress concentrations that occur at tissue interfaces, cell-cell interactions, cell-collagen fiber stress transfer in extracellular matrix and fluid shear flow. While attention in the past has been directed at understanding the myriad of biochemical players associated with mechanotransduction pathways, less attention has been focused on determining the tensile mechanical behavior of tissues in vivo. Fibroblasts sit on the surface of collagen fibers in living skin and exert a retractile force on the… More >

  • Open Access

    ARTICLE

    The Micro-Scale Mechanism of Metal Mine Tailings Thickening Concentration Improved by Shearing in Gravity Thickener

    Huazhe Jiao1,2, Yachuang Wu1, Wei Wang2,*, Xinming Chen1, Yunfei Wang1, Juanhong Liu3, Wentao Feng4

    Journal of Renewable Materials, Vol.9, No.4, pp. 637-650, 2021, DOI:10.32604/jrm.2021.014310

    Abstract Higher concentration is beneficial for the Paste and Thickened Tailings (PTT) operation in metal mine. Partial paste thickeners are produced lower density underflow. Flocculated tailings are intended to form a water entrapped network structure in thickener, which is detrimental to underflow concentration. In this study, the continuous thickening experiment was carried out for ultra-fine tungsten tailings to study the influence of rake shearing on underflow. The micro pores structure and seepage flow in tailings bed before and after shearing are studied by CT and simulation approach to reveal the shearing enhancement mechanism of thickening process. The results shown that, the… More >

  • Open Access

    ARTICLE

    Simulation of Solid Particle Interactions Including Segregated Lamination by Using MPS Method

    Kyung Sung Kim1, Moo-Hyun Kim2,*, Hakun Jang3, Hee Chen Cho4

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 11-29, 2018, DOI:10.31614/cmes.2018.00199

    Abstract A new MPS (Moving Particle Semi-implicit) method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum. As fluid particles are affected by viscosity, so solid particles are affected by friction. The solid particle dynamics for landslides, dumping, and gravity sorting etc. which can be difficult to simulate using conventional MPS methods, are modeled in this paper using the developed multi-solid-particle MPS method that benefits from drawing comparisons with the corresponding fluid particle behaviors. The present MPS results for dumping solid particles are verified against the corresponding DEM (Discrete Element Method) results. The shape… More >

  • Open Access

    ABSTRACT

    The Effect of Short-and Long-Term Simulated Microgravity on Immune Cells

    Sufang Wang1,2, Wenjuan Zhao1,2, Guolin Shi1,2, Nu Zhang1,2, Chen Zhang1,2, Hui Yang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 100-100, 2019, DOI:10.32604/mcb.2019.07112

    Abstract Long-term space flight will be a major mission for International Space Administration. However, it has been shown that exposure to space flight result in immune system dysfunction. Therefore, understand the mechanism of immune response under microgravity condition is a key topic. Macrophage is one of the most important immune cells in human body, playing key roles in both innate and adaptive immune systems. In this research, we used mouse macrophages (RAW264.7) and collected samples at short-term (8 hour), mediate-term (24 hour) and long-term (48 hour) microgravity treatment. We measured cell proliferation, phagocytosis function and used next-generation sequencing (NGS) to obtain… More >

  • Open Access

    ARTICLE

    Effect of Gravitational Field and Temperature Dependent Properties on Two-Temperature Thermoelastic Medium with Voids under G-N Theory

    Mohamed I. A. Othman1, Magda E. M. Zidan1, Mohamed I. M. Hilal1

    CMC-Computers, Materials & Continua, Vol.40, No.3, pp. 179-201, 2014, DOI:10.3970/cmc.2014.040.179

    Abstract This investigation is aimed to study the two dimensional problem of thermoelastic medium with voids under the effect of the gravity. The modulus of elasticity is taken as a linear function of the reference temperature and employing the two-temperature generalized thermoelasticity. The problem is studied in the context of Green-Naghdi (G-N) theory of types II and III. The normal mode analysis method is used to obtain the exact expressions for the physical quantities which have been shown graphically by comparison between two types of the (G-N) theory in the presence and the absence of the gravity, the temperature dependent properties… More >

  • Open Access

    ABSTRACT

    Geotechnical physical modeling and high gravity technology

    Linggang Kong, Yunmin Chen, Yanguo Zhou, Jianqun Jiang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 107-108, 2011, DOI:10.3970/icces.2011.020.107

    Abstract To investigate geotechnical systems, high gravity is needed due to the dominance of material self-weight. A centrifuge is a common technique to generate high gravity, which causes centrifugal acceleration. In geotechnical physical modeling, geotechnical centrifuge can generate the same gravity stress as the prototype, guarantees the consistency of model deformation and failure mechanism between the centrifugal model and real objects and solve complex problems in geotechnical engineering, hydraulic engineering and environmental engineering etc. In view of the scientific values of centrifuge and shaking table, Zhejiang University develops one of the largest geotechnical centrifuges in China. The centrifuge is a beam… More >

  • Open Access

    ABSTRACT

    Experimental Study on CT Micro Mechanics Characteristics of Soft Rock Creep under Gravity Disturbance Loads

    FU Zhiliang1, GUO Hua2, GAO Yanfa3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.3, pp. 145-156, 2008, DOI:10.3970/icces.2008.005.145

    Abstract This paper is focused on the micro-damage evolution properties of gray green mudstone under impacting disturbance load conditions for the first time by using the real time CT testing technique. CT images and CT values for rock cross-sections under different impacting disturbance loading levels were obtained. The paper is also to describe process of rock creep damage under disturbance loads and to explore the mechanism of micro-damage. The results have shown that rock failure is easy to happen suddenly rock is in or close to limit strength neighborhood during the process of disturbance. This will further lay the theory basis… More >

  • Open Access

    ARTICLE

    Effects of Simulated Microgravity on Vascular Development in Zebrafish

    XiangXie1,a, Deng Liu1,a, Daoxi Lei1, Yongfei Liu1, Qi Wang1, Zaien Wen1, Juhui Qiu1, Dongyu Jia1,2, Hans Gregersen1, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 171-186, 2017, DOI:10.3970/mcb.2017.014.171

    Abstract Research in microgravity is of utmost importance for disclosing the impact of gravity on biological processes and organisms. With the development of space technology, scientists pay more attention to cardiovascular diseases associated with microgravity. However, up to date only sparse data exist on microgravity and cardiovascular development mechanisms. In this study, zebrafish was chosen as the model organism. Zebrafish embryos were exposed to microgravity using a ground-based simulation microgravity (SM) bioreactor. The effects of SM on the development of early embryonic vascular system were studied in vivo in real-time. Zebrafish embryos were selected and divided into two groups at 12… More >

Displaying 11-20 on page 2 of 44. Per Page