Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Green Synthesis of Reduced Graphene Oxide Nanosheet by using L-ascorbic Acid and Study of its Cytotoxicity on Human Cervical Cancer Cell Line

    PRABHAT KUMAR, ANJANA SARKAR, PURNIMA JAIN*

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 121-135, 2022, DOI:10.32381/JPM.2022.39.1-2.8

    Abstract Biocompatible graphene derivative materials (GBMs) to harness the maximum potential of pristine graphene biologically, is the most important strategy for its advanced applications in pharmaceutical and other biomedical fields. Currently, scientists are trying to find this by using biopolymer nanocomposites or anchored materials. Nevertheless, tuning the bare GBMs towards biocompatibility is a beautiful approach to exploit the fundamental potential of pristine graphene vis-à-vis suppressing the effects of incorporated biopolymers or anchored materials. Herein, a large-scale, cost-effective, facile, and environment-friendly green synthetic strategy is used for the synthesis of reduced graphene oxide (rGO) nanosheet using L-ascorbic acid (L-AA) as a reducing/stabilizing/capping… More >

  • Open Access

    REVIEW

    Development of micro/nanostructured‒based biomaterials with biomedical applications

    AFAF ALHARTHI*

    BIOCELL, Vol.47, No.8, pp. 1743-1755, 2023, DOI:10.32604/biocell.2023.027154

    Abstract Natural biomaterials are now frequently used to build biocarrier systems, which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect. Biomaterials and polymers are of great importance in the synthesis of nanomaterials. The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi, algae, bacteria, and medicinal plants. They are also biodegradable, compatible with neighborhoods, and non-toxic. Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds, matrices, composites, and interpenetrating polymer networks employing… More >

  • Open Access

    ARTICLE

    Green Hydrothermal Synthesis and Applications of Sorbus pohuashanensis/Aronia melanocarpa Extracts Functionalized-Au/Ag/AuAg Nanoparticles

    Jin Huang1,2,#, Jixiang Sun1,3,4,#, Kai Shao1,3,4, Yamei Lin1,3,4, Zhiguo Liu1,3,4,*, Yujie Fu1, Liqiang Mu2,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1807-1821, 2023, DOI:10.32604/jrm.2023.023721

    Abstract Nanoparticles (NPs) have already been widely used in catalysis, antibacterial and coating fields. Compared with the traditional toxic and harmful reducing reagents, green synthesis of NPs by using plant extracts is not only environmental-friendly and cost-effective but also conducive to the multi-level and efficient utilization of wild plant resources. In this study, the aqueous extracts from Sorbus pohuashanensis (SP) and Aronia melanocarpa (AM) fruits were used as the reducing and protective reagents for synthesizing Au/AgNPs, with the characteristics of originality operation and high repeatability. The SP/AM fruit extracts functionalized Au/AgNPs were characterized by UV-vis spectroscopy (UV-vis), transmission electron microscopy (TEM),… More > Graphic Abstract

    Green Hydrothermal Synthesis and Applications of <i>Sorbus pohuashanensis</i>/<i>Aronia melanocarpa</i> Extracts Functionalized-Au/Ag/AuAg Nanoparticles

  • Open Access

    ARTICLE

    Green Synthesis for Lignin Plasticization: Aqueous Graft Copolymerization with Methyl Methacrylate

    Sinto Jacob1, Manjusri Misra1,2, Amar Mohanty1,2,*

    Journal of Renewable Materials, Vol.1, No.2, pp. 154-165, 2013, DOI:10.7569/JRM.2012.634107

    Abstract This study investigated the use of potassium persulfate (KPS) as an initiator for the grafting of methyl methacrylate (MMA) onto softwood kraft lignin. Ammonium iron (II) sulfate hexahydrate was used as a catalyst to overcome the inherent inhibition of lignin to free radical grafting and to make lignin copolymer under mild conditions using an aqueous medium. The infl uence of temperature, initiator concentration, time of reaction and monomer concentration on percentage of grafting were studied. A maximum of 31% grafting was achieved at 55ο C. Graft copolymer was identifi ed from the Fourier transform infrared (FTIR) spectrum by the new… More >

  • Open Access

    REVIEW

    Phytogenic Synthesis of Metal/Metal Oxide Nanoparticles for Degradation of Dyes

    Arpita Roy1,*, H. C. Ananda Murthy2 , Hiwa M. Ahmed3,4, Mohammad Nazmul Islam5, Ram Prasad6,*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1911-1930, 2022, DOI:10.32604/jrm.2022.019410

    Abstract Now-a-days nanotechnology is one of the booming fields for the researchers. With the increase in industrialization mainly textile, paper, medicine, plastic industry, there is an increase in concentration of organic dyes as pollutant. Release of harmful dyes in water bodies has become a serious issue, as most of the dyes are carcinogenic and mutagenic in nature and causes various diseases. Therefore, there is a requirement to find out new approaches for efficient treatment of effluent containing dyes. Nanoparticles are one of the potential solutions to this problem. They can be synthesized from different methods, however synthesis of nanoparticles from different… More >

  • Open Access

    ARTICLE

    A Study on a Magnesium-Based Layered Composite Used as a Flame Retardant for Phenolic Epoxy Resins

    Hongxiang Liu1,2,,*, Neng Xiong1,2, Songli Wang1,2, Wei Zhang1,2, Bo Yong1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 549-561, 2022, DOI:10.32604/fdmp.2022.017979

    Abstract

    The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin (EP) are studied. In order to produce the required composite material, first, magnesium hydroxide, aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction; then, the feed liquid is filtered out using a solid-liquid separation procedure; finally, the material is dried and crushed. In order to evaluate its effects on the flammability of the EP, first, m-phenylenediamine is added to EP and vacuum defoamation is performed; then, EP is poured into a polytetrafluoroethylene mold, cooled… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Green Potassium Nanoparticles from Sideroxylon Capiri and Evaluation of Their Potential Antimicrobial

    Judith Constantino-Alcazar1, Miguel Abud-Archila1, Benjamín Valdez-Salas3, Federico Gutierrez-Miceli1, Carlos Ceceña-Duran2, Blanca López-Valenzuela2, Daniel Gonzalez-Mendoza2,*,*

    Journal of Renewable Materials, Vol.9, No.10, pp. 1699-1706, 2021, DOI:10.32604/jrm.2021.015645

    Abstract In the present study, the green synthesis of potassium nanoparticles (K-NPs) was assessed using aqueous extract of Sideroxylon capiri. The potassium nanoparticles were analyzed by UV-visible spectroscopic techniques, X-ray spectrometers of energy dispersive (SEM-EDS) and dynamic light scattering. The results showed high values at 3.5 keV confirming the formation of potassium nanoparticles and the SEM analysis showed an agglomerated particles size between 360 to 200 nm with a spherical morphology. The K-NPs showed an effective antibacterial activity against the test organisms mainly with Bacillus cereus, Enterobacter aerogenes, Fusarium solani and Botrytis cinerea. However further studies about nanotoxicity of K-NPs are… More >

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles Using Plectranthus Amboinicus Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

    Nguyen Thi Thanh Thuy1,*, Le Hoang Huy1, Truong Thuy Vy1, Nguyen Thi Thanh Tam2, Bien Thi Lan Thanh1, Nguyen Thi My Lan3

    Journal of Renewable Materials, Vol.9, No.8, pp. 1393-1411, 2021, DOI:10.32604/jrm.2021.015772

    Abstract In the present study, the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus (PA), which acted as both reducing and stabilizing agents. The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) biocomposite. The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscope (SEM), and X–ray diffraction (XRD). The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44. The surface plasmon resonance of AgNPs, which… More > Graphic Abstract

    Green Synthesis of Silver Nanoparticles Using <i>Plectranthus Amboinicus</i> Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles Using Annona diversifolia Leaf Extract and Their Antimicrobial Application

    Rogelio Solorzano-Toala1, Daniel Gonzalez-Mendoza2,*, Benjamin Valdez-Salas3, Vianey MendezTrujillo4, Federico Gutierrez-Miceli1, Ernesto Beltran-Partida3, Olivia Tzintzun-Camacho2

    Journal of Renewable Materials, Vol.8, No.9, pp. 1129-1137, 2020, DOI:10.32604/jrm.2020.09845

    Abstract The aim of this study was the synthesis of silver nanoparticle using Annona diversifolia Safford. The silver nanoparticles obtained were analyzed by spectroscopic methods and dynamic light scattering methods. The inhibition of AgNPs was evaluated against Bacillus cereus, Klebsiella pneumoniae and Enterobacter aerogenes. The results showed that AgNPs have high values at 3 keV and particle size between 45 to 58 nm with a homogenous morphology. The AgNPs showed growth inhibition against Klebsiella pneumoniae and Enterobacter aerogenes. Therefore studies are needed to confirm the potential antimicrobial of different AgNP from A. diversifolia in Gram negative and Gram positive bacteria. More >

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles from Abronia villosa as an Alternative to Control of Pathogenic Microorganisms

    Ali Abdelmoteleb1, Benjamin Valdez-Salas2, Ernesto Beltran-Partida2, Daniel Gonzalez-Mendoza3,*

    Journal of Renewable Materials, Vol.8, No.1, pp. 69-78, 2020, DOI:10.32604/jrm.2020.08334

    Abstract The aim of this study was to evaluate the antibacterial and antifungal activities of eco-friendly synthesized silver nanoparticles. The silver nanoparticles were synthesized by biological method using aqueous extract of Abronia villosa. Synthesis of silver nanoparticles was confirmed by color change and characterized using UV-visible spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and zeta potential analysis. The SEM analysis revealed the presence of spherical silver nanoparticles of the size range 21 to 33 nm. Synthesized silver nanoparticles were used to evaluate their antibacterial effects at different concentrations (25, 50, 75 and 100 µg/ml)… More >

Displaying 1-10 on page 1 of 12. Per Page