Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Comprehensive Review and Analysis on Facial Emotion Recognition: Performance Insights into Deep and Traditional Learning with Current Updates and Challenges

    Amjad Rehman1, Muhammad Mujahid1, Alex Elyassih1, Bayan AlGhofaily1, Saeed Ali Omer Bahaj2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 41-72, 2025, DOI:10.32604/cmc.2024.058036 - 03 January 2025

    Abstract In computer vision and artificial intelligence, automatic facial expression-based emotion identification of humans has become a popular research and industry problem. Recent demonstrations and applications in several fields, including computer games, smart homes, expression analysis, gesture recognition, surveillance films, depression therapy, patient monitoring, anxiety, and others, have brought attention to its significant academic and commercial importance. This study emphasizes research that has only employed facial images for face expression recognition (FER), because facial expressions are a basic way that people communicate meaning to each other. The immense achievement of deep learning has resulted in a… More >

  • Open Access

    ARTICLE

    Deploying Hybrid Ensemble Machine Learning Techniques for Effective Cross-Site Scripting (XSS) Attack Detection

    Noor Ullah Bacha1, Songfeng Lu1, Attiq Ur Rehman1, Muhammad Idrees2, Yazeed Yasin Ghadi3, Tahani Jaser Alahmadi4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 707-748, 2024, DOI:10.32604/cmc.2024.054780 - 15 October 2024

    Abstract Cross-Site Scripting (XSS) remains a significant threat to web application security, exploiting vulnerabilities to hijack user sessions and steal sensitive data. Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats. This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression (LR), Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Deep Neural Networks (DNN). Utilizing the XSS-Attacks-2021 dataset, which comprises 460 instances across various real-world traffic-related scenarios, this framework significantly enhances XSS attack detection. Our approach, which… More >

  • Open Access

    ARTICLE

    IoT Information Status Using Data Fusion and Feature Extraction Method

    S. S. Saranya*, N. Sabiyath Fatima

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1857-1874, 2022, DOI:10.32604/cmc.2022.019621 - 07 September 2021

    Abstract The Internet of Things (IoT) role is instrumental in the technological advancement of the healthcare industry. Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0. Healthcare IoT systems are the emergence of this foresight. The communication systems between the sensing nodes and the processors; and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies. At present, many new technologies supplement these empowering technologies. So, in this research work, a practical feature extraction and classification… More >

Displaying 1-10 on page 1 of 3. Per Page