Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access


    Low Velocity Impact Response and Failure Assessment of Textile Reinforced Concrete Slabs

    Subashini I1, a, Smitha Gopinath2, *, Aahrthy R3, b

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 291-306, 2017, DOI:10.3970/cmc.2017.053.291

    Abstract Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasticity model was employed to the cementitious binder of TRC and Von-Mises criterion was used for the textile reinforcement. Strain dependent smoothed particle hydrodynamics (SPH) was used to assess the damage and failure pattern of TRC slabs. Numerical simulation was carried out on TRC slabs with two different volume fraction of glass textile reinforcement More >

  • Open Access


    Research and Improvement on the Accuracy of Discontinuous Smoothed Particle Hydrodynamics (DSPH) Method

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 179-201, 2015, DOI:10.3970/cmc.2015.047.179

    Abstract Discontinuous smoothed particle hydrodynamics (DSPH) method based on traditional SPH method, which can be used to simulate discontinuous physics problems near interface or boundary. Previous works showed that DSPH method has a good application prospect [Xu et al, 2013], but further verification and improvement are demanded. In this paper, we investigate the accuracy of DSPH method by some numerical models. Moreover, to improve the accuracy of DSPH method, first order and second order multidimensional RDSPH methods are proposed by following the idea of restoring particle consistency in SPH (RSPH) method which has shown good results More >

  • Open Access


    A Coupling Algorithm of Finite Element Method and Smoothed Particle Hydrodynamics for Impact Computations

    Yihua Xiao1, Xu Han1,2, Dean Hu1

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 9-34, 2011, DOI:10.3970/cmc.2011.023.009

    Abstract For impact computations, it is efficient to model small and large deformation regions by Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), respectively. However, it requires an effective algorithm to couple FEM and SPH calculations. To fulfill this requirement, an alternative coupling algorithm is presented in this paper. In the algorithm, the coupling between element and particle regions are achieved by treating elements as imaginary particles and applying equivalent tractions to element sides on coupling interfaces. In addition, an adaptive coupling technique is proposed based on the algorithm to improve the computational efficiency of More >

Displaying 61-70 on page 7 of 63. Per Page