Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

    Redouane En-nadir1,*, Haddou El-ghazi2, Anouar Jorio1, Izeddine Zorkani1, Hassan Abboudi1, Fath Allah Jabouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1253-1261, 2022, DOI:10.32604/fdmp.2022.021759

    Abstract In this paper, we theoretically investigate the total optical coefficient (TOAC) considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well (SPQW) with an on-center hydrogen-like impurity. Within the framework of the effective-mass approximation, the Schrödinger equation is solved numerically to obtain the eigenvalues and their corresponding eigenvectors using the finite difference method. The calculations are performed for finite confinement potential height, taking into account the dielectric and effective mass mismatches between GaN and InGaN materials under the considered electric field and temperature effects. The temperature dependence of the effective mass, dielectric constant and band gap energy… More > Graphic Abstract

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

Displaying 1-10 on page 1 of 1. Per Page