Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Three-Stages Hyperspectral Image Compression Sensing with Band Selection

    Jingbo Zhang, Yanjun Zhang, Xingjuan Cai*, Liping Xie*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 293-316, 2023, DOI:10.32604/cmes.2022.020426 - 24 August 2022

    Abstract Compressed sensing (CS), as an efficient data transmission method, has achieved great success in the field of data transmission such as image, video and text. It can robustly recover signals from fewer Measurements, effectively alleviating the bandwidth pressure during data transmission. However, CS has many shortcomings in the transmission of hyperspectral image (HSI) data. This work aims to consider the application of CS in the transmission of hyperspectral image (HSI) data, and provides a feasible research scheme for CS of HSI data. HSI has rich spectral information and spatial information in bands, which can reflect… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features

    S. Prasanna Bharathi1,2, S. Srinivasan1,*, G. Chamundeeswari1, B. Ramesh1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 579-594, 2023, DOI:10.32604/csse.2023.027592 - 16 August 2022

    Abstract Now a days, Remote Sensing (RS) techniques are used for earth observation and for detection of soil types with high accuracy and better reliability. This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics. There are a few challenges that is present in soil classification using image enhancement such as, locating and plotting soil boundaries, slopes, hazardous areas, drainage condition, land use, vegetation etc. There are some traditional approaches which involves few drawbacks such as, manual involvement which results in inaccuracy due to human interference, time… More >

  • Open Access

    ARTICLE

    Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification

    B. Chellapraba1,*, D. Manohari2, K. Periyakaruppan3, M. S. Kavitha4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2353-2366, 2023, DOI:10.32604/iasc.2023.029923 - 19 July 2022

    Abstract Hyperspectral (HS) image classification is a hot research area due to challenging issues such as existence of high dimensionality, restricted training data, etc. Precise recognition of features from the HS images is important for effective classification outcomes. Additionally, the recent advancements of deep learning (DL) models make it possible in several application areas. In addition, the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics. In this view, this article develops an automated red deer algorithm with deep learning enabled hyperspectral image (HSI)… More >

  • Open Access

    REVIEW

    Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review

    Somenath Bera1, Vimal K. Shrivastava2, Suresh Chandra Satapathy3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 219-250, 2022, DOI:10.32604/cmes.2022.020601 - 21 July 2022

    Abstract Hyperspectral image (HSI) classification has been one of the most important tasks in the remote sensing community over the last few decades. Due to the presence of highly correlated bands and limited training samples in HSI, discriminative feature extraction was challenging for traditional machine learning methods. Recently, deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification. Among various deep learning models, convolutional neural networks (CNNs) have shown huge success and offered great potential to yield high performance in HSI classification. Motivated… More >

  • Open Access

    ARTICLE

    Non-Negative Minimum Volume Factorization (NMVF) for Hyperspectral Images (HSI) Unmixing: A Hybrid Approach

    Kriti Mahajan1, Urvashi Garg1, Nitin Mittal2, Yunyoung Nam3, Byeong-Gwon Kang4,*, Mohamed Abouhawwash5,6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3705-3720, 2022, DOI:10.32604/cmc.2022.027936 - 16 June 2022

    Abstract Spectral unmixing is essential for exploitation of remotely sensed data of Hyperspectral Images (HSI). It amounts to the identification of a position of spectral signatures that are pure and therefore called end members and their matching fractional, draft rules abundances for every pixel in HSI. This paper aims to unmix hyperspectral data using the minimal volume method of elementary scrutiny. Moreover, the problem of optimization is solved by the implementation of the sequence of small problems that are constrained quadratically. The hard constraint in the final step for the abundance fraction is then replaced with… More >

  • Open Access

    ARTICLE

    Fusion-Based Deep Learning Model for Hyperspectral Images Classification

    Kriti1, Mohd Anul Haq2, Urvashi Garg1, Mohd Abdul Rahim Khan2,*, V. Rajinikanth3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 939-957, 2022, DOI:10.32604/cmc.2022.023169 - 24 February 2022

    Abstract A crucial task in hyperspectral image (HSI) taxonomy is exploring effective methodologies to effusively practice the 3-D and spectral data delivered by the statistics cube. For classification of images, 3-D data is adjudged in the phases of pre-cataloging, an assortment of a sample, classifiers, post-cataloging, and accurateness estimation. Lastly, a viewpoint on imminent examination directions for proceeding 3-D and spectral approaches is untaken. In topical years, sparse representation is acknowledged as a dominant classification tool to effectually labels deviating difficulties and extensively exploited in several imagery dispensation errands. Encouraged by those efficacious solicitations, sparse representation… More >

  • Open Access

    ARTICLE

    An Intelligent Deep Learning Based Xception Model for Hyperspectral Image Analysis and Classification

    J. Banumathi1, A. Muthumari2, S. Dhanasekaran3, S. Rajasekaran4, Irina V. Pustokhina5, Denis A. Pustokhin6, K. Shankar7,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2393-2407, 2021, DOI:10.32604/cmc.2021.015605 - 05 February 2021

    Abstract Due to the advancements in remote sensing technologies, the generation of hyperspectral imagery (HSI) gets significantly increased. Accurate classification of HSI becomes a critical process in the domain of hyperspectral data analysis. The massive availability of spectral and spatial details of HSI has offered a great opportunity to efficiently illustrate and recognize ground materials. Presently, deep learning (DL) models particularly, convolutional neural networks (CNNs) become useful for HSI classification owing to the effective feature representation and high performance. In this view, this paper introduces a new DL based Xception model for HSI analysis and classification,… More >

  • Open Access

    ARTICLE

    Deep 3D-Multiscale DenseNet for Hyperspectral Image Classification Based on Spatial-Spectral Information

    Haifeng Song1, Weiwei Yang1,*, Haiyan Yuan2, Harold Bufford3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1441-1458, 2020, DOI:10.32604/iasc.2020.011988 - 24 December 2020

    Abstract There are two main problems that lead to unsatisfactory classification performance for hyperspectral remote sensing images (HSIs). One issue is that the HSI data used for training in deep learning is insufficient, therefore a deeper network is unfavorable for spatial-spectral feature extraction. The other problem is that as the depth of a deep neural network increases, the network becomes more prone to overfitting. To address these problems, a dual-channel 3D-Multiscale DenseNet (3DMSS) is proposed to boost the discriminative capability for HSI classification. The proposed model has several distinct advantages. First, the model consists of dual… More >

  • Open Access

    ARTICLE

    A Noise-Resistant Superpixel Segmentation Algorithm for Hyperspectral Images

    Peng Fu1,2, Qianqian Xu1, Jieyu Zhang3, Leilei Geng4,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 509-515, 2019, DOI:10.32604/cmc.2019.05250

    Abstract The superpixel segmentation has been widely applied in many computer vision and image process applications. In recent years, amount of superpixel segmentation algorithms have been proposed. However, most of the current algorithms are designed for natural images with little noise corrupted. In order to apply the superpixel algorithms to hyperspectral images which are always seriously polluted by noise, we propose a noise-resistant superpixel segmentation (NRSS) algorithm in this paper. In the proposed NRSS, the spectral signatures are first transformed into frequency domain to enhance the noise robustness; then the two widely spectral similarity measures-spectral angle More >

Displaying 11-20 on page 2 of 19. Per Page