Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (102)
  • Open Access


    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

    Siti Aekbal Salleh1,2,*, Nafisah Khalid1, Natasha Danny6, Nurul Ain Mohd. Zaki2,3, Mustafa Ustuner4, Zulkiflee Abd Latif1,2, Vladimir Foronda5

    Revue Internationale de Géomatique, Vol.33, pp. 183-199, 2024, DOI:10.32604/rig.2024.050723

    Abstract Due to the spectral and spatial properties of pervious and impervious surfaces, image classification and information extraction in detailed, small-scale mapping of urban surface materials is quite difficult and complex. Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques, which are fundamental to this approach. Consequently, the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods, pixel-based approach and object-based approach, using WorldView-2 satellite imagery to specifically highlight… More > Graphic Abstract

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

  • Open Access


    Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification

    Yuting Zhou1, Xuemei Yang1, Junping Yin2,3,4,*, Shiqi Liu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5313-5333, 2024, DOI:10.32604/cmc.2024.052060

    Abstract Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines global features and local features. The network framework consists of three parallel layers: The global feature extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local feature… More >

  • Open Access


    Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Reza Salehi3, Diego Martín3,*, Zahra Halimi4, Sahba Baniasadi5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3469-3493, 2024, DOI:10.32604/cmc.2024.049847

    Abstract Hyperspectral (HS) image classification plays a crucial role in numerous areas including remote sensing (RS), agriculture, and the monitoring of the environment. Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification. This process involves selecting the most informative spectral bands, which leads to a reduction in data volume. Focusing on these key bands also enhances the accuracy of classification algorithms, as redundant or irrelevant bands, which can introduce noise and lower model performance, are excluded. In this paper, we propose an approach for HS image classification using… More >

  • Open Access


    Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net

    Fadl Dahan*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 381-395, 2024, DOI:10.32604/iasc.2024.047921

    Abstract In the domain of medical imaging, the accurate detection and classification of brain tumors is very important. This study introduces an advanced method for identifying camouflaged brain tumors within images. Our proposed model consists of three steps: Feature extraction, feature fusion, and then classification. The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques, using the ResNet50 Convolutional Neural Network (CNN) architecture. So the focus is to extract robust feature from MRI images, particularly emphasizing weighted average features extracted from the first convolutional layer renowned for… More >

  • Open Access


    A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

    Tsu-Yang Wu1,2, Haonan Li2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 19-46, 2024, DOI:10.32604/cmc.2024.048347

    Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian… More >

  • Open Access


    Pervasive Attentive Neural Network for Intelligent Image Classification Based on N-CDE’s

    Anas W. Abulfaraj*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1137-1156, 2024, DOI:10.32604/cmc.2024.047945

    Abstract The utilization of visual attention enhances the performance of image classification tasks. Previous attention-based models have demonstrated notable performance, but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences. Neural-Controlled Differential Equations (N-CDE’s) and Neural Ordinary Differential Equations (NODE’s) are extensively utilized within this context. N-CDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity. To this end, an attentive neural network has been proposed to generate attention maps, which uses two different types of N-CDE’s, one for adopting hidden layers… More >

  • Open Access


    Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

    Fayez Alfayez*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1539-1560, 2024, DOI:10.32604/cmc.2024.046443

    Abstract This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spine fractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picture segmentation, feature reduction, and image classification. Two important elements are investigated to reduce the classification time: Using feature reduction software and leveraging the capabilities of sophisticated digital processing hardware. The researchers use different algorithms for picture enhancement, including the Wiener and Kalman filters, and they look into two background correction techniques. The article presents a technique for extracting textural features and evaluates three… More >

  • Open Access


    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and… More >

  • Open Access


    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078

    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of… More >

  • Open Access


    Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3127-3144, 2023, DOI:10.32604/csse.2023.038959

    Abstract Computational intelligence (CI) is a group of nature-simulated computational models and processes for addressing difficult real-life problems. The CI is useful in the UAV domain as it produces efficient, precise, and rapid solutions. Besides, unmanned aerial vehicles (UAV) developed a hot research topic in the smart city environment. Despite the benefits of UAVs, security remains a major challenging issue. In addition, deep learning (DL) enabled image classification is useful for several applications such as land cover classification, smart buildings, etc. This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification (MDLS-UAVIC) model… More >

Displaying 1-10 on page 1 of 102. Per Page