Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (94)
  • Open Access

    ARTICLE

    Symbiotic Organisms Search with Deep Learning Driven Biomedical Osteosarcoma Detection and Classification

    Abdullah M. Basahel1, Mohammad Yamin1, Sulafah M. Basahel2, Mona M. Abusurrah3, K.Vijaya Kumar4, E. Laxmi Lydia5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 133-148, 2023, DOI:10.32604/cmc.2023.031786

    Abstract Osteosarcoma is one of the rare bone cancers that affect the individuals aged between 10 and 30 and it incurs high death rate. Early diagnosis of osteosarcoma is essential to improve the survivability rate and treatment protocols. Traditional physical examination procedure is not only a time-consuming process, but it also primarily relies upon the expert’s knowledge. In this background, the recently developed Deep Learning (DL) models can be applied to perform decision making. At the same time, hyperparameter optimization of DL models also plays an important role in influencing overall classification performance. The current study introduces a novel Symbiotic Organisms… More >

  • Open Access

    ARTICLE

    Constructing an AI Compiler for ARM Cortex-M Devices

    Rong-Guey Chang, Tam-Van Hoang*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 999-1019, 2023, DOI:10.32604/csse.2023.034672

    Abstract The diversity of software and hardware forces programmers to spend a great deal of time optimizing their source code, which often requires specific treatment for each platform. The problem becomes critical on embedded devices, where computational and memory resources are strictly constrained. Compilers play an essential role in deploying source code on a target device through the backend. In this work, a novel backend for the Open Neural Network Compiler (ONNC) is proposed, which exploits machine learning to optimize code for the ARM Cortex-M device. The backend requires minimal changes to Open Neural Network Exchange (ONNX) models. Several novel optimization… More >

  • Open Access

    ARTICLE

    Auxiliary Classifier of Generative Adversarial Network for Lung Cancer Diagnosis

    P. S. Ramapraba1,*, P. Epsiba2, K. Umapathy3, E. Sivanantham4

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2177-2189, 2023, DOI:10.32604/iasc.2023.032040

    Abstract The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns. In this work, an Auxiliary Classifier (AC)-Generative Adversarial Network (GAN) based Lung Cancer Classification (LCC) system is developed. The proposed AC-GAN-LCC system consists of three modules; preprocessing, Lungs Region Detection (LRD), and AC-GAN classification. A Wiener filter is employed in the preprocessing module to remove the Gaussian noise. In the LRD module, only the lung regions (left and right lungs) are detected using iterative thresholding and morphological operations. In order to extract the lung region only, flood filling… More >

  • Open Access

    ARTICLE

    Hybrid Convolutional Neural Network for Plant Diseases Prediction

    S. Poornima1,*, N. Sripriya1, Adel Fahad Alrasheedi2, S. S. Askar2, Mohamed Abouhawwash3,4

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2393-2409, 2023, DOI:10.32604/iasc.2023.024820

    Abstract Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products. The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agriculture. Manual system to monitor the diseases in plant is time consuming and report a lot of errors. There is high demand for technology to detect the plant diseases automatically. Recently image processing approach and deep learning approach are highly invited in detection of plant diseases. The diseases like late blight, bacterial spots, spots on Septoria leaf and yellow leaf curved are widely found in plants.… More >

  • Open Access

    ARTICLE

    A More Efficient Approach for Remote Sensing Image Classification

    Huaxiang Song*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5741-5756, 2023, DOI:10.32604/cmc.2023.034921

    Abstract Over the past decade, the significant growth of the convolutional neural network (CNN) based on deep learning (DL) approaches has greatly improved the machine learning (ML) algorithm’s performance on the semantic scene classification (SSC) of remote sensing images (RSI). However, the unbalanced attention to classification accuracy and efficiency has made the superiority of DL-based algorithms, e.g., automation and simplicity, partially lost. Traditional ML strategies (e.g., the handcrafted features or indicators) and accuracy-aimed strategies with a high trade-off (e.g., the multi-stage CNNs and ensemble of multi-CNNs) are widely used without any training efficiency optimization involved, which may result in suboptimal performance.… More >

  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    Pavitra Vasudevan1, R. Faerie Mattins1, S. Srivarshan1, Ashvath Narayanan1, Gayatri Wadhwani1, R. Parvathi1, R. Maheswari2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331

    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring the progress of a patient… More >

  • Open Access

    ARTICLE

    EfficientNetV2 Model for Plant Disease Classification and Pest Recognition

    R. S. Sandhya Devi1,*, V. R. Vijay Kumar2, P. Sivakumar3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2249-2263, 2023, DOI:10.32604/csse.2023.032231

    Abstract Plant disease classification and prevention of spreading of the disease at earlier stages based on visual leaves symptoms and Pest recognition through deep learning-based image classification is in the forefront of research. To perform the investigation on Plant and pest classification, Transfer Learning (TL) approach is used on EfficientNet-V2. TL requires limited labelled data and shorter training time. However, the limitation of TL is the pre-trained model network’s topology is static and the knowledge acquired is detrimentally overwriting the old parameters. EfficientNet-V2 is a Convolutional Neural Network (CNN) model with significant high speed learning rates across variable sized datasets. The… More >

  • Open Access

    ARTICLE

    An Intelligent Hazardous Waste Detection and Classification Model Using Ensemble Learning Techniques

    Mesfer Al Duhayyim1,*, Saud S. Alotaibi2, Shaha Al-Otaibi3, Fahd N. Al-Wesabi4, Mahmoud Othman5, Ishfaq Yaseen6, Mohammed Rizwanullah6, Abdelwahed Motwakel6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3315-3332, 2023, DOI:10.32604/cmc.2023.033250

    Abstract Proper waste management models using recent technologies like computer vision, machine learning (ML), and deep learning (DL) are needed to effectively handle the massive quantity of increasing waste. Therefore, waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process. This study concentrates on the design of hazardous waste detection and classification using ensemble learning (HWDC-EL) technique to reduce toxicity and improve human health. The goal of the HWDC-EL technique is to detect the multiple classes of wastes, particularly hazardous and non-hazardous wastes.… More >

  • Open Access

    ARTICLE

    Chained Dual-Generative Adversarial Network: A Generalized Defense Against Adversarial Attacks

    Amitoj Bir Singh1, Lalit Kumar Awasthi1, Urvashi1, Mohammad Shorfuzzaman2, Abdulmajeed Alsufyani2, Mueen Uddin3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2541-2555, 2023, DOI:10.32604/cmc.2023.032795

    Abstract Neural networks play a significant role in the field of image classification. When an input image is modified by adversarial attacks, the changes are imperceptible to the human eye, but it still leads to misclassification of the images. Researchers have demonstrated these attacks to make production self-driving cars misclassify Stop Road signs as 45 Miles Per Hour (MPH) road signs and a turtle being misclassified as AK47. Three primary types of defense approaches exist which can safeguard against such attacks i.e., Gradient Masking, Robust Optimization, and Adversarial Example Detection. Very few approaches use Generative Adversarial Networks (GAN) for Defense against… More >

  • Open Access

    ARTICLE

    Android Malware Detection Using ResNet-50 Stacking

    Lojain Nahhas1, Marwan Albahar1,*, Abdullah Alammari2, Anca Jurcut3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3997-4014, 2023, DOI:10.32604/cmc.2023.028316

    Abstract There has been an increase in attacks on mobile devices, such as smartphones and tablets, due to their growing popularity. Mobile malware is one of the most dangerous threats, causing both security breaches and financial losses. Mobile malware is likely to continue to evolve and proliferate to carry out a variety of cybercrimes on mobile devices. Mobile malware specifically targets Android operating system as it has grown in popularity. The rapid proliferation of Android malware apps poses a significant security risk to users, making static and manual analysis of malicious files difficult. Therefore, efficient identification and classification of Android malicious… More >

Displaying 21-30 on page 3 of 94. Per Page